CNN卷积神经网络教程【超精华版】【附项目源码】

CNN卷积神经网络教程【超精华版】【附项目源码】

相关链接:

实战项目——基于pytorch的深度学习花朵种类识别项目完整教程(内涵完整文件和代码)

大白话pytorch基本知识点及语法+项目实战

CNN

知识点:

较好数据集:CIFAR-10 数据集

机器学习流程:数据获取、特征提取、建立模型、评估与应用

深度学习特征:数据特征决定了模型的上限、算法与参数选择决定了

神经网络作用:自动进行各种特征提取

神经网络目标:更新w权值矩阵

神经网络矩阵计算:都是内积计算,两矩阵对应位置相乘然后相加

神经网络包括两部分:前向传播和反向传播

回归任务:得分值->损失值

概率任务:概率值->损失值

pytorch是实现cnn的一种方法

如何逼近这个上限、预处理和特征提取是最核心的

K近邻算法:(有缺点,神经网络弥补了)

计算流程:

1.计算已知类别数据集中的点与当前点的距离

2.按照距离依次排序

3.选取与当前点距离最小的K个点

4.确定前K个点所在类别的出现概率

5.返回前K个点出现频率最高的类别作为当前点预测分类

k近邻进行的图像识别,用测试照片和众多训练照片各个对应像素点相减,得到的差值矩阵各个数据的总和最小的,则测试图片和该训练图片一种类别。

请添加图片描述

缺点:不能分清哪个是主体,哪个是背景,干扰太大

传统神经网络层级结构(nn,二维):

隐层神经元数量越多效果越好,但太多容易出现过拟合

非线性变换用的激活函数

全连接层不能搞三维

请添加图片描述

数据预处理:

参数初始化:初始化权值矩阵(随机生成)

请添加图片描述

数据标准化:

请添加图片描述

前向传播:

神经网络基础线性函数:(计算得分值)

F(Xi,w,b)= w*xi + b

w 权值矩阵是不断优化出来的,初始化一个随机的

请添加图片描述

损失函数L:
计算损失值:

请添加图片描述

请添加图片描述

请添加图片描述

max(0,(该预测的各个类别的概率的最大值 - 正确种类的预测值 + 1 ))

0和该项取一个大值,+1 是容错值,即正确类别比其他类别的最大值要大1才行

R(w)是防止过拟合,即(1,0,0,0)和(0.25,0.25,0.25,0.25),前者可能恰好这张图拟合的很好,但肯定不行,加入平方项让其变成大值被去掉

请添加图片描述

softmax分类器->得各类概率值:

请添加图片描述

反向传播:

用结果对相关参数分别做偏导,可以得到该参数对结果的影响

请添加图片描述

卷积神经网络(cnn,三维):

得到几个类别的概率值

输入层->卷积层(提取特征)->激活函数(非线性处理,卷积操作后必须有这一步)->(几次)池化层(压缩特征)->全连接层(加上权重,输入层和隐层的矩阵运算)

卷积神经网络架构:

请添加图片描述

卷积层:

一般卷积是3*3核,步长为1

要得到几个特征值就选几个卷积核

三个通道分别计算然后加在一起

相乘(做内积)后要 + b(偏置项)

绿色的为一次卷积得到的特征图(filter)

请添加图片描述

请添加图片描述

请添加图片描述

池化层:

请添加图片描述
推荐B站看一下唐宇迪讲解,很通俗易懂
4天教会你深度学习|Opencv+PyTorch+CNN+Python入门到实战课程

请添加图片描述
关注博主,分享学习教程,一起HappyCodeing

### 冰箱食材识别技术及应用 #### 1. 技术背景与发展现状 随着智能家居技术的进步,冰箱作为家庭重要电器之一,在智能化方面取得了显著进展。除了基本的保鲜和冷藏功能外,现代智能冰箱还能通过联网技术和用户互动,提供更加便捷的服务。然而,传统冰箱存在信息不对称的问题,使得用户难以实时掌握内部食材的具体情况,进而影响食品管理效率并可能引发浪费或安全隐患。 为了改善这一状况,基于机器学习特别是卷积神经网络(CNN)[^1]的技术被引入到冰箱食材分类领域。这类解决方案能够帮助用户更好地管理和监控储藏物品的状态及其有效期,提高资源利用率的同时也增强了安全性。 #### 2. 关键实现原理——YOLO系列模型的应用 具体来说,针对冰箱内的复杂环境条件下的物体检测需求,采用了先进的YOLO (You Only Look Once)v10版本的目标检测框架来构建食物识别系统[^2]。此架构以其快速处理速度著称,并能在保持较高准确性的情况下完成多类别的即时预测任务。对于本案例而言,则是对过三十种常见于家用储存空间里的食用商品进行了专门的数据集训练,使其能够在不同光照强度下稳定工作,准确地标记出每一件待测对象的位置与名称。 ```python import torch from yolov10 import YOLOv10 model = YOLOv10(pretrained=True) def detect_ingredients(image_path): image = load_image(image_path) results = model.detect([image]) for result in results: label, confidence, bbox = result['label'], result['confidence'], result['bbox'] print(f"Detected {label} with confidence {confidence:.2f}") detect_ingredients('fridge_contents.jpg') ``` 上述代码展示了如何加载预训练好的YOLO v10模型并对给定路径下的图片执行成分探测操作。实际部署过程中还会涉及到更多细节配置如调整输入尺寸、设置阈值参数等以适应具体的硬件平台特性。 #### 3. 用户体验提升措施 为了让这项先进技术真正融入日常生活当中,开发团队还特别注重用户体验的设计。为此配套了一套直观易用的操作面板,允许使用者轻松上传照片文件或是开启摄像头直播流来进行在线分析;同时提供了详尽的帮助文档和支持渠道以便遇到困难时寻求指导。更重要的是整个软件包都是开放源码形式发布的,这意味着任何有兴趣的人都可以根据自己的特殊要求对其进行二次开发或者集成至其他第三方应用程序里去。 #### 4. 扩展服务与其他优势 除此之外,“Ingredients”项目进一步拓展了食材识别的能力边界。该项目融合了之前两个知名开源作品schollz/meanrecipe 和 schollz/extract_recipe 的精华部分,致力于打造更为精确高效的食材解析引擎。借助其强大的API接口,开发者们可以轻易获取有关食谱组成的信息,甚至是从网页上抓取完整的烹饪指南[^3]。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hbzhao@USTC

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值