论文详情:
期刊:T-PAMI-2021
地址:参考笔记
1.Abstract
本文综述了到2021年1月底在步态识别方面的最新进展,以
- 全面概述了深度学习步态识别的突破和最近的发展,涵盖了广泛的主题,包括数据集,测试协议,最新的解决方案,挑战和未来的研究方向。
- 首先回顾了常用的步态数据集以及为评估它们而设计的原则。
- 然后,提出了一个新的分类方法,它由四个独立的维度组成,即主体表征、时间表征、特征表征和神经结构,以帮助描述和组织该领域的研究景观和文献。
- 在此基础上,对基于深度学习的步态识别方法进行了综述,并对其性能、特点、优势和局限性进行了讨论。我们总结了这一调查,讨论了当前的挑战,并提出了一些有前途的方向,未来的研究在步态识别。
2.INTRODUCTION
基于视觉的步态识别系统(以下仅称为步态识别)的性能可能会受到以下因素的影响:
1)个人的外观变化,如携带手提包/背包或穿着衣服,如帽子或外套;
2)摄像机视点的变化;
3)遮挡因子,例如受试者身体的一部分被物体或在某些视点上被受试者自己身体的一部分遮挡(称为自遮挡)[15],[16];
4)环境的变化,如复杂的背景[17]和高或低水平的照明[18],通常使分割和识别过程更加困难。
3.TEST PROTOCOLS AND DATASETS
3.1Protocols
步态识别解决方案的测试协议通常可分为受试者相关和 受试者无关 。
- 在受试者相关协议中,训练集和测试集都包括来自所有受试者的样本。在受试者无关协议中,测试受试者与训练受试者是不相交的。
- 在后一种协议下,测试数据被进一步分为注册集和 验证集 ,然后用在不相交的训练对象上学习到的模型来提取注册集和验证集的特征。
最后,使用分类器将验证特征与注册特征进行比较,以识别最相似的步态模式,并将它们标记为来自相同的人。
- 在步态识别中,受试者相关和受试者无关协议被广泛采用。例如,在小规模数据集中,经常使用受试者相关协议,在大规模数据集中,则使用受试者无关协议。文献中的步态识别结果都是使用rank-1识别精度进行测量和表示的。
3.2 Datasets
CASIA-B数据集[32]是目前应用最广泛的步态数据集,包含124人的多视图步态数据,以RGB和剪影的形式呈现。获取已执行从11个不同的视角,范围从0◦到180◦18◦增量。
该数据集考虑三种不同的行走条件,即正常行走(NM)、穿外套行走(CL)和带包行走(BG),每个视图中每个人的步态序列分别为6、2和2。
最常用的CASIA-B测试方案是一种受试者独立方案,使用前74名受试者的数据进行培训,其余50名受试者进行测试。然后,测试数据被分割成一个画廊集,包括来自NM步态数据的前四个步态序列,探针集包括其余的序列,即每个受试者每个视图中剩下的2个NM、2个CL和2个BG序列。结果大多报道的所有视角角度,排除探头序列与参考角度相同的角度。
4. PROPOSED TAXONOMY
文章通过四个维度( 身体表示 、 时间表示 、特征表示和 神经架构 )的分类法来更好地说明深度学习步态识别方法的技术前景。