RAG开发中常见的12个痛点及天壤解法,看完你算是入门大模型了!

还记得Barnett 等人论文《构建检索增强生成系统的七大挑战》在业界引起了广泛关注,激发了一场关于 RAG 技术发展的热烈讨论。Wenqi Glantz 进一步丰富了这一讨论,在原有基础上增加了 5 个关键痛点,将 RAG 开发中的难题扩展到了 12 个。

在本文中,我们将深入剖析,展示天壤如何利用技术手段来应对 RAG 的 12 个痛点,创造出更加实用、更精准的 AI 应用。

1

内容缺失

知识库中缺少必要的上下文信息。当知识库没有包含正确答案时,RAG 系统可能会给出一个貌似合理但实际上错误的回答,而不是明确表示它不知道答案。这可能会导致用户接收到误导信息,从而感到挫败。

天壤解法

\1. 混合增强RAG:关键词检索解决没有Embedded的内容检索正确性,语义检索解决Query和Doc语义不一致的问题,综合提高检索的准确性。
\2. 设置阈值:即在回答问题前先设定一个质量标准。如果召回内容达不到标准或无召回,系统不会提供答案,而是告诉用户需要更多信息或返回固定话术,防止错误或不准确的信息误导用户。

\3. 判断上下文信息是否充分:如果判断出上下文信息不足,系统不会尝试提供可能错误的回答,而是提示用户需要提供更多上下文或优化查询词。

图片

2

遗漏重要文档

在初始的检索步骤中,有时会漏掉关键文档,导致它们没有出现在系统返回的最顶端结果之中。这就意味着正确的答案可能被忽略了,使得系统无法准确回答问题。正如论文所指出的,“答案虽然在某个文档中,但因为排名不够高而没有呈现给用户”。

天壤解法

\1. 分析用户意图:通过分析用户的查询词汇和历史交互,缩小搜索范围,提高检索的相关性。

\2. 混合增强 RAG:关键词检索解决没有 Embedded 的内容检索正确性,语义检索解决 Query 和 Doc 语义不一致的问题,综合提高检索的准确性。

\3. 引入重排序模型:根据用户的实际反馈和文档的相关性指标,对召回的文档进行二次排序,确保最相关的内容出现在结果的顶部。

图片

图片

图片

3

脱离上下文的挑战

即使在重排之后,有时关键文档仍未能融入生成答案所需的上下文中。这种情况通常出现在数据库返回大量文档,并需要通过一个整合过程来检索答案时。简而言之,即便包含答案的文档被检索到了,但未能有效整合进最终的回答中。

天壤解法

\1. 添加文档标签过滤:通过标签分类文档,在搜索时通过标签来缩小搜索范围,减少无关信息干扰,检索与用户查询最相关的文档。

\2. 微调 embedding 模型:在预训练的模型基础上,使用特定领域的数据集进一步训练,以适应特定的任务或需求,帮助模型更好地理解用户查询和文档内容之间的语义相似性,从而提高检索的准确性。

图片

图片

4

信息提取困难

有时系统难以从提供的上下文中提取正确答案,特别是当上下文信息量过大时。关键细节可能会被忽略,影响回答的质量。这种情况往往出现在上下文中存在过多的干扰信息或信息矛盾时。

天壤解法

基于天壤知识工程,进行知识萃取,将这些信息转化为结构化的知识,并与现有索引系统相结合,快速有效地响应用户的查询。

图片

5

输出格式不正确

当系统忽略了以特定格式(例如表格或列表)提取信息的指令时,输出可能会出现格式错误。

天壤解法

天壤大模型根据预设的格式要求,如JSON,来组织和呈现信息。通过这种对齐,模型在输出信息时能够保持一致性和准确性。

图片

6

细节不够具体

当输出没有达到所需的级别时,回答可能会缺乏必要的详细信息,经常需要进一步的查询来进行澄清。答案可能过于泛泛或模糊,无法有效地满足用户的需求。

天壤解法

级联增强:根据用户的初始查询生成回答,系统分析第一次回答的结果,识别出更多细节,并据此生成更具体的问题,系统使用更具体的问题再次进行 RAG,逐步提高回答的质量。

图片

7

输出不完整

有时输出虽不完全错误,但却未能提供所有详细信息,尽管这些信息在上下文中是存在且可以获取的。例如,询问文档 A、B 和 C 讨论的主要方面时,分别询问每个文档可能更能确保获得全面的答案。

天壤解法

使用大模型对用户提出的问题进行拆解,将其分解为更小、更具体的子问题,接着,系统对每个子问题分别进行 RAG 流程,以确保每个文档的关键信息都能被充分考虑和提取,从而提供更完整、更全面的回答。

图片

8

数据摄入的扩展性问题

当数据摄入管道难以处理更大数据量,可能会出现性能瓶颈和系统潜在故障,导致摄入时间延长、系统过载、数据质量问题及可用性限制。

天壤解法

采用分布式处理框架提升数据摄入管道的处理能力,确保系统在面对大规模数据时仍能保持高性能和高可用性。

图片

9

结构化数据的查询应答

对于复杂或含糊的查询,准确解释用户查询并检索相关结构化数据可能颇具挑战,尤其是在文本到 SQL 转换不够灵活和当前 LLM 处理这类任务的限制下。

天壤解法

CoT 和 ToT 流程:鼓励大模型在生成答案之前进行更深入的思考。CoT 流程要求模型展示其推理过程,而 ToT 则进一步让模型对自己的推理进行反思,从而提高大模型在处理结构化数据查询时的表现。

图片

10

处理复杂 PDF 文档的数据提取

从嵌入的表格等复杂 PDF 文档中提取数据,尤其用于问答场景,传统的检索方法可能无法实现。我们需要更高级的方法来处理这种复杂的 PDF 数据提取。

天壤解法

\1. 天壤知识工程平台提供一系列工具,处理多种文档格式,识别文档中的表格、图表、标题和其他结构元素,以及它们之间的关系。

\2. 使用长序列的 token 输入大模型,使模型更好地理解上下文,从而提供更准确的回答。

图片

11

备用模型

在使用 LLM 时,可能会遇到比如 OpenAI 模型的速率限制错误等问题。在主模型出现故障时,你需要一个或多个备用模型作为后备。

天壤解法

天壤开放平台支持接入多种模型,用户可以根据需要切换不同的 LLM。

图片

12

LLM的安全问题

处理提示注入、不安全输出以及防止敏感信息泄露等问题,是每位 AI 架构师和工程师面临的关键挑战。

天壤解法

天壤开放平台支持集成敏感词检测服务,自动识别和过滤掉可能引起安全问题的词汇。

图片

通过将这 12 个挑战及其建议的解决方法并列在一张表中,我们现在可以更直观地理解问题及其对策。

图片

虽然这份清单并未穷尽 RAG 系统设计与实现的所有细节,但它旨在揭开这一过程中所面临的复杂挑战的神秘面纱。

期望通过这些分享,让我们更好地理解 RAG 系统的复杂性,激发大家的热情,一起让大模型应用在现实世界中大放异彩。

如何学习大模型

现在社会上大模型越来越普及了,已经有很多人都想往这里面扎,但是却找不到适合的方法去学习。

作为一名资深码农,初入大模型时也吃了很多亏,踩了无数坑。现在我想把我的经验和知识分享给你们,帮助你们学习AI大模型,能够解决你们学习中的困难。

我已将重要的AI大模型资料包括市面上AI大模型各大白皮书、AGI大模型系统学习路线、AI大模型视频教程、实战学习,等录播视频免费分享出来,需要的小伙伴可以扫取。

一、AGI大模型系统学习路线

很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,我下面分享的这个学习路线希望能够帮助到你们学习AI大模型。

在这里插入图片描述

二、AI大模型视频教程

在这里插入图片描述

三、AI大模型各大学习书籍

在这里插入图片描述

四、AI大模型各大场景实战案例

在这里插入图片描述

五、结束语

学习AI大模型是当前科技发展的趋势,它不仅能够为我们提供更多的机会和挑战,还能够让我们更好地理解和应用人工智能技术。通过学习AI大模型,我们可以深入了解深度学习、神经网络等核心概念,并将其应用于自然语言处理、计算机视觉、语音识别等领域。同时,掌握AI大模型还能够为我们的职业发展增添竞争力,成为未来技术领域的领导者。

再者,学习AI大模型也能为我们自己创造更多的价值,提供更多的岗位以及副业创收,让自己的生活更上一层楼。

因此,学习AI大模型是一项有前景且值得投入的时间和精力的重要选择。

  • 13
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值