凸限制下的凸优化问题(一)

本文主要介绍在凸限制下的凸优化问题。我们将这个问题记为 Problem(P) ,描述如下:

minf0(x)fi(x)0,iIgi(x)0,iJgi(x)=0,iK

其中 f0:RnR{+} 是一个凸函数, I,J,K 是有限集,当然也可能是空集。 fi 是凸的,非仿射函数, gi 是一个仿射函数。

1.

在解决这个问题之前我们需要次梯度,次微商的概念。令 f Rn上的凸函数,如果向量x^*满足

f(z)f(x)+x(zx),zRn
那么 x f 次梯度,所有在x处的次梯度称为 f x次微商,记为 f(x)
我们需要解释一下次梯度的概念。如果一个函数在某个点处是可微的,那么它在这个点处存在唯一的切平面(原因是梯度的唯一),使得函数图像都是在这个切平面之上的,这里的在切平面之上的意思就是
f(z)f(x)+x(zx),zRn
,其中左面就是经过这个点的切平面。针对凸函数,有些点是不可微的,但是我们仍然可以通过这个点做一个平面,使得这个函数的图像在这个平面之上。这样的平面是不唯一的。我们把所有的符合这样性质的平面的法向量收集起来,就是次梯度。
2.KKT

我们称 x¯,(λi)iI,(μi)iJK 满足 Problem(p)KKT ,如果它们满足如下四个条件:

(1)iI,λi0,fi(x¯)0,λifi(x¯)=0(2)iJ,μ0,gi(x¯)0,μigi(x¯)=0(3)iK,gi(x¯)=0(4)0f0(x¯)+iIλfi(x¯)+iJKμi{gi(x¯)}+δC(x¯)

KKT 条件的前三个是比较容易理解的,关键是第四个 f0,fi 不一定是可微的,所以我们用次微商,但是由于 gi 是仿射函数,所以是可微的,用它的梯度表示。最后一项的作用保证 x¯ Problem(P) 的定义域C内, δC(x)=0 如果 xC ,否则为无穷大。
如果 x¯,(λi)iI,(μi)iJK 满足 KKT 条件,那么 x¯ Problem(P) 的解。

3.Problem(P)

根据KKT条件的最后一句话,我们只需找到满足KKT
条件的 x¯,(λi)iI,(μi)iJK 便可。接下来我们就用拉格朗日函数来解决这个问题。
(Problem(P)的拉格朗日函数) L:Rp+×Rq+×R(rq)×RnR{+} ,它的自变量为 (λ,μ,x)=((λi)iI,(μi)iJ,(μi)iK,x) .

L(λ,μ,x)=f0(x)+iI(λifi)(x)+iJμgi(x)+iKμgi(x)
我们称 (λ¯,μ¯,x¯) 为L的鞍点,如果 (λ,μ)Rp+×Rq+×R(rq),xRn

L(λ,μ,x¯)L(λ¯,μ¯,x¯)L(λ¯,μ¯,x)

那么我们给出拉格朗日函数和 Problem(P) 之间的关系。如果 (λ¯,μ¯,x¯) 为L的鞍点,那么 x¯ Problem(P) 的解, (λ¯,μ¯) 是KKT参数。


我们通常遇到的凸优化问题并非像 Problem(P) 那样,它的一个变形如下,我们称为 Pα,β 问题.

minf(x)fi(x)αi,iIgi(x)=βi,iKxRn

其中 f 和f_i为凸函数,gi为线性函数, fi 也可以是线性函数。

1.

V(α,β)=inf{f(x)|xRn,fi(x)αi,iI;gi(x)=βi,iJ}

其中 α=(αi)iIRp,β=(βi)iKRr

2.

求解方法仍然是拉格朗日乘子法。令 x¯ 满足 fi(x¯)αi,iI,gi(x¯)=βi , iK ,我们称 Pα,βx¯(λ,μ)Rp×Rr 满足 λ0,λi(fi(x¯)αi) =0,iI

ψ(x)=f(x)+iIλi(f(x)αi)+iKμi(gi(x)βi)+δC(x)
x¯ 处达到最小值。

总结为:如果 x¯ 满足 fi(x¯)αi,gi(x¯)=βi ,如果 Pα,β x¯ 有一个拉格朗日乘子,那么 x¯ Pα,β 的解.
同时,我们要明白如果 x¯ Pα,βx¯V(α,β)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值