描述
使用基于oneAPI的C++/SYCL实现一个用于计算图像的卷积操作。输⼊为一个图像矩阵和一个卷积核矩阵,输出为卷积后的图像。
分析
图像卷积是一种常见的图像处理操作,用于应用各种滤波器和特征检测器。其原理可以简单地描述为在图像的每个像素上应用一个小的矩阵(通常称为卷积核或滤波器),并将卷积核中的元素与图像中对应位置的像素值相乘,然后将所有乘积的和作为结果。这个过程可以看作是对图像进行了平滑、锐化、边缘检测等操作。
假设有⼀个大小为M × N
的输入图像 I
和一个大小为 m × n
的卷积核 K
。图像卷积操作可以用下面的数学公式来表示:
S
(
i
,
j
)
=
Σ
k
Σ
l
I
(
i
+
k
,
j
+
l
)
⋅
K
(
k
,
l
)
S(i, j)=\Sigma_k \Sigma_l\ I(i+k,j+l)\cdot K(k,l)
S(i,j)=ΣkΣl I(i+k,j+l)⋅K(k,l)
其中,
S(i, j)
是卷积操作的结果图像中位置 (i, j)
处的像素值,
I(i+k, j+l)
是图像中位置 (i+k, j+l)
处的像素值,
K(k, l)
是卷积核中位置 (k, l)
处的权重。
卷积核通常是一个小的⼆维矩阵,用于捕捉图像中的特定特征。在异构计算编程中,可以使用并行计算来加速图像卷积操作。通过将图像分割成小块,然后在GPU上并行处理这些块,可以实现高效的图像卷积计算。通过合理的块大小和线程组织方式,可以最大限度地利用GPU的并行计算能力来加速图像处理过程。
基于GPU的图像卷积操作的原理基于并行处理和矩阵乘法的基本原理,通过将图像数据和卷积核数据分配给不同的线程块和线程,利用GPU的并行计算能力实现对图像的快速处理。
代码
#include <CL/sycl.hpp>
#include <iostream>
#include <vector>
constexpr size_t KERNEL_SIZE = 5; // 卷积核尺寸
constexpr size_t IMAGE_WIDTH = 100; // 图像宽度
constexpr size_t IMAGE_HEIGHT = 100; // 图像高度
// 定义卷积核
const float kernel[9]={1,0,1,2,0,-2,1,0,1};
// 定义输入图像
const std::vector<float> inputImage = {1, 2, 3, 4,
5, 6, 7, 8,
9, 10, 11, 12,
13, 14, 15, 16};
// 定义输出图像
std::vector<float> outputImage(IMAGE_WIDTH * IMAGE_HEIGHT);
int main() {
// 创建一个队列来执行DPC++任务
cl::sycl::queue queue;
// 创建输入和输出缓冲区
cl::sycl::buffer<float, 2> inputBuffer(inputImage.data(),
cl::sycl::range<2>(IMAGE_HEIGHT, IMAGE_WIDTH));
cl::sycl::buffer<float, 2> outputBuffer(outputImage.data(),
cl::sycl::range<2>(IMAGE_HEIGHT, IMAGE_WIDTH));
// 提交DPC++任务
queue.submit([&](cl::sycl::handler& cgh) {
// 获取输入和输出访问器
auto inputAccessor = inputBuffer.get_access<cl::sycl::access::mode::read>(cgh);
auto outputAccessor = outputBuffer.get_access<cl::sycl::access::mode::write>(cgh);
// 定义内核函数
cgh.parallel_for<class ConvolutionKernel>(cl::sycl::range<2>(IMAGE_HEIGHT, IMAGE_WIDTH),
[=](cl::sycl::item<2> item) {
size_t row = item[0];
size_t col = item[1];
// 执行卷积操作
float result = 0.0f;
for (int i = -1; i <= 1; ++i) {
for (int j = -1; j <= 1; ++j) {
if (row + i >= 0 && row + i < IMAGE_HEIGHT &&
col + j >= 0 && col + j < IMAGE_WIDTH) {
float pixel = inputAccessor[row + i][col + j];
float kernelValue = kernel[(i + 1) * KERNEL_SIZE + (j + 1)];
result += pixel * kernelValue;
}
}
}
outputAccessor[item] = result;
});
});
// 将输出图像从设备内存复制到主机内存
queue.wait_and_throw();
queue.submit([&](cl::sycl::handler& cgh) {
auto outputAccessor = outputBuffer.get_access<cl::sycl::access::mode::read>(cgh);
cgh.copy(outputAccessor, outputImage.data());
});
queue.wait_and_throw();
// 打印输出图像
std::cout << "Output Image:\n";
for (size_t i = 0; i < IMAGE_HEIGHT; ++i) {
for (size_t j = 0; j < IMAGE_WIDTH; ++j) {
std::cout << outputImage[i * IMAGE_WIDTH + j] << " ";
}
std::cout << "\n";
}
return 0;
}
验证
针对黑客松基准数据集在oneapi dev cloud
跑了结果;
为验证正确性,构造了一个小的测试样例如下:
// 定义卷积核
const float kernel[9]={1,0,1,2,0,-2,1,0,1};
// 定义输入图像
const std::vector<float> inputImage = {1, 2, 3, 4,
5, 6, 7, 8,
9, 10, 11, 12,
13, 14, 15, 16};
结果如下,与预期相符:
黑客松基准数据集的结果如下:
声明
参考:https://zhuanlan.zhihu.com/p/634628468