seaborn clustermap详解及绘制

本文深入探讨seaborn的clustermap功能,它不仅用于热力图的绘制,还能结合聚类算法揭示数据的相关性结构,尤其适用于生物信息学分析。通过clustermap,我们可以对样本和基因进行聚类,增强数据洞察。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

seaborn clustermap详解及绘制

 

seaborn提供了一个叫作clustermap的功能,除了可以采用热力图对相关系数进行可视化,还可以对变量根据相关系数进行聚类,即发现热力图数据的结构(Discovering structure in heatmap data)。

 

在clustermap函数里面其实是使用了heatmap的,但是加上了聚类功能,使得其绘制出来的热图具有横向样本(sample)和纵向基因(gene)的聚类功能,更符合生物信息学分析的要求。

 

# features_X_train, features_X_test, target_train, target_test

culster_pd = pd.DataFrame()
train_pd = pd.concat([features.iloc[features_X_train.index],target_train],axis = 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Data+Science+Insight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值