一些数学概念整理

测度 Measure:

测度是一个集函数,它是对一个给定集合中的某些子集到一个数值的映射。
传统的积分是在区间上进行的,后来人们希望把积分推广到任意的集合上,就发展出测度的概念。

测度空间 Measure Space:

一个测度空间包含三部分 ( X , A , μ ) (X, \mathcal {A}, \mu ) (X,A,μ),且满足下列条件:

  • X X X为非空集合。
  • A \mathcal {A} A X X X上的一个 σ σ σ-代数,也就是满足某些条件的 X X X中的一些子集构成的集合。
  • μ \mu μ ( X , A ) (X,\mathcal {A}) (X,A)上的测度,换句话讲,是一个定义在 A \mathcal {A} A上的有特别性质的(非负)函数。

【例子】
对集合 X = { 0 , 1 } X=\{0,1\} X={0,1}
A = { ∅ , { 0 } , { 1 } , { 0 , 1 } } {\mathcal {A}}=\{\emptyset ,\{0\},\{1\},\{0,1\}\} A={,{0},{1},{0,1}}
定义 μ ( { 0 } ) = μ ( { 1 } ) = 1 2 \mu (\{0\})=\mu (\{1\})={\frac {1}{2}} μ({0})=μ({1})=21
则根据测度的可数可加性, μ ( { 0 , 1 } ) = 1 \mu (\{0,1\})=1 μ({0,1})=1,另根据测度的定义, μ ( ∅ ) = 0 \mu (\emptyset )=0 μ()=0,则 ( X , A , μ ) (X,{\mathcal {A}},\mu) (X,A,μ)为一个测度空间。

σ-代数 σ-Algebra:

某个集合 X X X上的 σ σ σ-代数又叫 σ σ σ-域,是 X X X的幂集的子集合( X X X的幂集即包含所有 X X X的子集的集合系)。
X X X为非空集合,集合系 F \mathcal{F} F中的元素是 P ( X ) {\mathcal {P}}(X) P(X)的子集合,满足以下条件的集合系 F \mathcal{F} F称为
X X X上的一个 σ σ σ-代数:

  • X X X是集合系 F \mathcal {F} F中的元素;
  • 如果集合 A A A F \mathcal {F} F中,那么它的补集 A c A^{c} Ac也在 F \mathcal {F} F中;
  • 如果有可数个集合 A 1 , A 2 , ⋯ A_{1},A_{2},\cdots A1,A2,都在 F \mathcal{F} F中,那么它们的并集也在 F \mathcal {F} F中。

【例子】
X X X上含集合最少的 σ σ σ-代数 { ∅ , X } \{\emptyset ,X\} {,X}
X X X上含集合最多的 σ σ σ-代数是 X X X的幂集。
假设集合 X = { a , b , c , d } X=\{a,b,c,d\} X={a,b,c,d},那么 F = { ∅ , { a } , { b , c , d } , X } \mathcal {F}=\{\varnothing ,\{a\},\{b,c,d\},X\} F={,{a},{b,c,d},X}是集合 X X X上的一个 σ σ σ-代数。这也是所有包含 { a } \{a\} {a} σ σ σ-代数中最“小”的一个。

概率测度 Probability Measure:

每一个概率空间都有一个测度,它对全空间取值为1(于是其值全部落到单位区间[0,1]中)。
函数 μ μ μ作为概率空间上的概率测度的要求是:
(1) μ μ μ必须以在 [ 0 , 1 ] [0,1] [0,1]之内返回结果,返回0为空集,返回1为整个空间。
(2) μ μ μ必须满足所有可数集合中不相交集合可加的属性:
μ ( ⋃ i ∈ I E i ) = ∑ i ∈ I μ ( E i ) \mu\left(\bigcup_{i \in I} E_{i}\right)=\sum_{i \in I} \mu\left(E_{i}\right) μ(iIEi)=iIμ(Ei)
【例子】

策略集合:

策略集合是个由玩家所能采取的策略所组成的集合。
若玩家有有限个具体的策略可供选择,则称其有个有限策略集合。若有无限个具体的策略可供选择,则称其有个无限策略集合。

纯策略 Pure Strategy:

纯策略是只使用策略集合中其中一条策略。参与人在其策略空间中选取唯一确定的策略。

混合策略 Mixed Strategy:

混合策略是对每个纯策略分配一个概率。混合策略允许玩家随机选择一个纯策略。因为几率是连续的,所以即使策略集合是有限的,也会有无限多个混合策略。参与人采取的不是明确唯一的策略,而是其策略空间上的一种概率分布。

纳什均衡 Nash Equilibrium:

在博弈论中,如果每个参与者都选择了自己的策略,并且没有玩家可以透过改变策略而其他参与者保持不变而获益,那么当前的策略选择的集合及其相应的结果构成了纳什均衡。

芬切尔对偶 Fenchel dual:

Fenchel对偶也叫Fenchel共轭。假设X为一个Hilbert(希尔伯特)空间, f : X → [ − ∞ , + ∞ ] f :X →[-\infty,+\infty] f:X[,+]是一个函数。假设 f f f定义域 dom ⁡ f = { x ∈ X ∣ f ( x ) ∈ R } ≠ ∅ \operatorname{dom} f=\{x \in X \mid f(x) \in \mathbb{R}\} \neq \emptyset domf={xXf(x)R}=。那么Fenchel对偶 f ∗ f^* f u ∈ X u \in X uX的值定义为
f ∗ ( u ) = sup ⁡ x ∈ X ( ⟨ x , u ⟩ − f ( x ) ) f^{*}(u)=\sup _{x \in X}(\langle x, u\rangle-f(x)) f(u)=xXsup(x,uf(x))

伴随算子 adjoint operator:

希尔伯特空间中的每个线性算子有一个相应的伴随算子(adjoint operator)。一个算子A的伴随常常也称为埃尔米特伴随(Hermitian adjoint),记作 A ∗ A^* A A † A^† A(后者用于狄拉克符号记法)。
假设H是一个希尔伯特空间,带有内积 ⟨ ⋅ , ⋅ ⟩ \langle\cdot,\cdot\rangle ,。考虑连续线性算子 A : H → H A : H → H A:HH
利用里斯表示定理,我们可以证明存在唯一的连续线性算子
A* : H → H具有如下性质:
⟨ A x , y ⟩ = ⟨ x , A ∗ y ⟩ \langle Ax,y\rangle =\langle x,A^{*}y\rangle Ax,y=x,Ay,对所有 x , y ∈ H x,y\in H x,yH,则算子A* 是A的伴随算子。
算子的伴随将方块矩阵共轭转置推广到无穷维情形。在标准(复)内积下具有相似的性质。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值