数学概念
测度 Measure:
测度是一个集函数,它是对一个给定集合中的某些子集到一个数值的映射。
传统的积分是在区间上进行的,后来人们希望把积分推广到任意的集合上,就发展出测度的概念。
测度空间 Measure Space:
一个测度空间包含三部分 ( X , A , μ ) (X, \mathcal {A}, \mu ) (X,A,μ),且满足下列条件:
- X X X为非空集合。
- A \mathcal {A} A为 X X X上的一个 σ σ σ-代数,也就是满足某些条件的 X X X中的一些子集构成的集合。
- μ \mu μ为 ( X , A ) (X,\mathcal {A}) (X,A)上的测度,换句话讲,是一个定义在 A \mathcal {A} A上的有特别性质的(非负)函数。
【例子】
对集合
X
=
{
0
,
1
}
X=\{0,1\}
X={0,1}
取
A
=
{
∅
,
{
0
}
,
{
1
}
,
{
0
,
1
}
}
{\mathcal {A}}=\{\emptyset ,\{0\},\{1\},\{0,1\}\}
A={∅,{0},{1},{0,1}}
定义
μ
(
{
0
}
)
=
μ
(
{
1
}
)
=
1
2
\mu (\{0\})=\mu (\{1\})={\frac {1}{2}}
μ({0})=μ({1})=21
则根据测度的可数可加性,
μ
(
{
0
,
1
}
)
=
1
\mu (\{0,1\})=1
μ({0,1})=1,另根据测度的定义,
μ
(
∅
)
=
0
\mu (\emptyset )=0
μ(∅)=0,则
(
X
,
A
,
μ
)
(X,{\mathcal {A}},\mu)
(X,A,μ)为一个测度空间。
σ-代数 σ-Algebra:
某个集合
X
X
X上的
σ
σ
σ-代数又叫
σ
σ
σ-域,是
X
X
X的幂集的子集合(
X
X
X的幂集即包含所有
X
X
X的子集的集合系)。
让
X
X
X为非空集合,集合系
F
\mathcal{F}
F中的元素是
P
(
X
)
{\mathcal {P}}(X)
P(X)的子集合,满足以下条件的集合系
F
\mathcal{F}
F称为
X
X
X上的一个
σ
σ
σ-代数:
- X X X是集合系 F \mathcal {F} F中的元素;
- 如果集合 A A A在 F \mathcal {F} F中,那么它的补集 A c A^{c} Ac也在 F \mathcal {F} F中;
- 如果有可数个集合 A 1 , A 2 , ⋯ A_{1},A_{2},\cdots A1,A2,⋯都在 F \mathcal{F} F中,那么它们的并集也在 F \mathcal {F} F中。
【例子】
X
X
X上含集合最少的
σ
σ
σ-代数
{
∅
,
X
}
\{\emptyset ,X\}
{∅,X};
X
X
X上含集合最多的
σ
σ
σ-代数是
X
X
X的幂集。
假设集合
X
=
{
a
,
b
,
c
,
d
}
X=\{a,b,c,d\}
X={a,b,c,d},那么
F
=
{
∅
,
{
a
}
,
{
b
,
c
,
d
}
,
X
}
\mathcal {F}=\{\varnothing ,\{a\},\{b,c,d\},X\}
F={∅,{a},{b,c,d},X}是集合
X
X
X上的一个
σ
σ
σ-代数。这也是所有包含
{
a
}
\{a\}
{a}的
σ
σ
σ-代数中最“小”的一个。
概率测度 Probability Measure:
每一个概率空间都有一个测度,它对全空间取值为1(于是其值全部落到单位区间[0,1]中)。
函数
μ
μ
μ作为概率空间上的概率测度的要求是:
(1)
μ
μ
μ必须以在
[
0
,
1
]
[0,1]
[0,1]之内返回结果,返回0为空集,返回1为整个空间。
(2)
μ
μ
μ必须满足所有可数集合中不相交集合可加的属性:
μ
(
⋃
i
∈
I
E
i
)
=
∑
i
∈
I
μ
(
E
i
)
\mu\left(\bigcup_{i \in I} E_{i}\right)=\sum_{i \in I} \mu\left(E_{i}\right)
μ(i∈I⋃Ei)=i∈I∑μ(Ei)
【例子】
策略集合:
策略集合是个由玩家所能采取的策略所组成的集合。
若玩家有有限个具体的策略可供选择,则称其有个有限策略集合。若有无限个具体的策略可供选择,则称其有个无限策略集合。
纯策略 Pure Strategy:
纯策略是只使用策略集合中其中一条策略。参与人在其策略空间中选取唯一确定的策略。
混合策略 Mixed Strategy:
混合策略是对每个纯策略分配一个概率。混合策略允许玩家随机选择一个纯策略。因为几率是连续的,所以即使策略集合是有限的,也会有无限多个混合策略。参与人采取的不是明确唯一的策略,而是其策略空间上的一种概率分布。
纳什均衡 Nash Equilibrium:
在博弈论中,如果每个参与者都选择了自己的策略,并且没有玩家可以透过改变策略而其他参与者保持不变而获益,那么当前的策略选择的集合及其相应的结果构成了纳什均衡。
芬切尔对偶 Fenchel dual:
Fenchel对偶也叫Fenchel共轭。假设X为一个Hilbert(希尔伯特)空间,
f
:
X
→
[
−
∞
,
+
∞
]
f :X →[-\infty,+\infty]
f:X→[−∞,+∞]是一个函数。假设
f
f
f定义域
dom
f
=
{
x
∈
X
∣
f
(
x
)
∈
R
}
≠
∅
\operatorname{dom} f=\{x \in X \mid f(x) \in \mathbb{R}\} \neq \emptyset
domf={x∈X∣f(x)∈R}=∅。那么Fenchel对偶
f
∗
f^*
f∗在
u
∈
X
u \in X
u∈X的值定义为
f
∗
(
u
)
=
sup
x
∈
X
(
⟨
x
,
u
⟩
−
f
(
x
)
)
f^{*}(u)=\sup _{x \in X}(\langle x, u\rangle-f(x))
f∗(u)=x∈Xsup(⟨x,u⟩−f(x))
伴随算子 adjoint operator:
希尔伯特空间中的每个线性算子有一个相应的伴随算子(adjoint operator)。一个算子A的伴随常常也称为埃尔米特伴随(Hermitian adjoint),记作
A
∗
A^*
A∗或
A
†
A^†
A†(后者用于狄拉克符号记法)。
假设H是一个希尔伯特空间,带有内积
⟨
⋅
,
⋅
⟩
\langle\cdot,\cdot\rangle
⟨⋅,⋅⟩。考虑连续线性算子
A
:
H
→
H
A : H → H
A:H→H。
利用里斯表示定理,我们可以证明存在唯一的连续线性算子
A* : H → H具有如下性质:
⟨
A
x
,
y
⟩
=
⟨
x
,
A
∗
y
⟩
\langle Ax,y\rangle =\langle x,A^{*}y\rangle
⟨Ax,y⟩=⟨x,A∗y⟩,对所有
x
,
y
∈
H
x,y\in H
x,y∈H,则算子A* 是A的伴随算子。
算子的伴随将方块矩阵共轭转置推广到无穷维情形。在标准(复)内积下具有相似的性质。