前 n 个正整数的任意次方和

本文介绍了两种不同的方法求解前n个正整数的任意次方和,从高中的基础知识到帕斯卡的立方和公式,再到分部求和公式的应用,揭示了数学中的巧妙思维。内容涵盖信息与数学的结合,适合对数学感兴趣的读者。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文灵感来源于大一时的新生研讨课——仰教授的《信息与数学浅谈》

One way

道生一

j = n − i j=n-i j=ni,则
∑ i = 1 n i = ∑ j = 1 n ( n + 1 − j ) = ∑ j = 1 n ( n + 1 ) − ∑ j = 1 n j = n ( n + 1 ) − ∑ i = 1 n i 2 ∑ i = 1 n i = n ( n + 1 ) ∑ i = 1 n i = n ( n + 1 ) 2 \begin{aligned}\sum_{i=1}^ni=\sum_{j=1}^n(n+1-j)&=\sum_{j=1}^n(n+1)-\sum_{j=1}^nj=n(n+1)-\sum_{i=1}^ni\\ 2\sum_{i=1}^ni&=n(n+1)\\ \sum_{i=1}^ni&=\frac{n(n+1)}{2} \end{aligned} i=1ni=j=1n(n+1j)2i=1nii=1ni=j=1n(n+1)j=1nj=n(n+1)i=1ni=n(n+1)=2n(n+1)这种做法想必大家都已经在高中学过了,下面来看另一种巧妙的做法
( n + 1 ) 2 − n 2 = 2 n + 1 n 2 − ( n − 1 ) 2 = 2 ( n − 1 ) + 1 ⋮ = ⋮ 3 2 − 2 2 = 2 ∗ 2 + 1 2 2 − 1 2 = 2 ∗ 1 + 1 \begin{aligned} (n+1)^2-n^2&=2n+1\\ n^2-(n-1)^2&=2(n-1)+1\\ \vdots\quad&=\quad\vdots\\ 3^2-2^2&=2*2+1\\ 2^2-1^2&=2*1+1 \end{aligned} (n+1)2n2n2(n1)232222212=2n+1=2(n1)+1==22+1=21+1 n n n 个等式,两边分别求和,
( n + 1 ) 2 − 1 = 2 ∑ i = 1 n i + n n 2 + 2 n = 2 ∑ i = 1 n i + n ∑ i = 1 n i = n 2 + n 2 \begin{aligned} (n+1)^2-1&=2\sum_{i=1}^ni+n\\ n^2+2n&=2\sum_{i=1}^ni+n\\ \sum_{i=1}^ni&=\frac{n^2+n}{2} \end{aligned} (n+1)21n2+2ni=1ni=2i=1ni+n=2i=1ni+n=2n2+n

一生二

下面利用相同的方法,求自然数的平方和
( n + 1 ) 3 − n 3 = 3 n 2 + 3 n + 1 n 3 − ( n − 1 ) 3 = 3 ( n − 1 ) 2 + 3 ( n − 1 ) + 1 ⋮ = ⋮ 3 3 − 2 3 = 3 ∗ 2 2 + 3 ∗ 2 + 1 2 3 − 1 3 = 3 ∗ 1 2 + 3 ∗ 1 + 1 \begin{aligned} (n+1)^3-n^3&=3n^2+3n+1\\ n^3-(n-1)^3&=3(n-1)^2+3(n-1)+1\\ \vdots\quad&=\quad\vdots\\ 3^3-2^3&=3*2^2+3*2+1\\ 2^3-1^3&=3*1^2+3*1+1 \end{aligned} (n+1)3n3n3(n1)333232313=3n2+3n+1=3(n1)2+3(n1)+1==322+32+1=312+31+1两边求和
( n + 1 ) 3 − 1 = 3 ∑ i = 1 n i 2 + 3 ∑ i = 1 n i + n n 3 + 3 n 2 + 3 n = 3 ∑ i = 1 n i 2 + 3 n 2 + n 2 + n ∑ i = 1 n i 2 = 2 n 3 + 3 n 2 + n 6 = n ( n + 1 ) ( 2 n + 1 ) 6 \begin{aligned} (n+1)^3-1&=3\sum_{i=1}^ni^2+3\sum_{i=1}^ni+n\\ n^3+3n^2+3n&=3\sum_{i=1}^ni^2+3\frac{n^2+n}{2}+n\\ \sum_{i=1}^ni^2&=\frac{2n^3+3n^2+n}{6}=\frac{n(n+1)(2n+1)}{6} \end{aligned} (n+1)31n3+3n2+3ni=1ni2=3i=1ni2+3i=1ni+n=3i=1ni2+32n2+n+n=62n3+3n2+n=6n(n+1)(2n+1)这种巧妙的的解法是法国数学家帕斯卡 (Pascal) \textrm{(Pascal)} (Pascal) 想出来的.

二生三

立方和呢,我们也来做一下,
( n + 1 ) 4 − n 4 = 4 n 3 + 6 n 2 + 4 n + 1 n 4 − ( n − 1 ) 4 = 4 ( n − 1 ) 3 + 6 ( n − 1 ) 2 + 4 ( n − 1 ) + 1 ⋮ = ⋮ 3 4 − 2 4 = 4 ∗ 2 3 + 6 ∗ 2 2 + 4 ∗ 2 + 1 2 4 − 1 4 = 4 ∗ 1 3 + 6 ∗ 1 2 + 4 ∗ 1 + 1 \begin{aligned} (n+1)^4-n^4&=4n^3+6n^2+4n+1\\ n^4-(n-1)^4&=4(n-1)^3+6(n-1)^2+4(n-1)+1\\ \vdots\quad&=\quad\vdots\\ 3^4-2^4&=4*2^3+6*2^2+4*2+1\\ 2^4-1^4&=4*1^3+6*1^2+4*1+1 \end{aligned} (n+1)4n4n4(n1)434242414=4n3+6n2+4n+1=4(n1)3+6(n1)2+4(n1)+1==423+622+42+1=413+612+41+1其中 ( n + 1 ) 4 (n+1)^4 (n+1)4 利用牛顿二项式展开,即
( a + b ) n = ∑ p = 0 n C n p   a p   b n − p (a+b)^n=\sum_{p=0}^nC_n^p\,a^p\,b^{n-p} (a+b)n=p=0nCnpapbnp两边相加,
( n + 1 ) 4 − 1 = 4 ∑ i = 1 n i 3 + 6 ∑ i = 1 n i 2 + 4 ∑ i = 1 n i + n n 4 + 4 n 3 + 6 n 2 + 4 n = 4 ∑ i = 1 n i 3 + 6 2 n 3 + 3 n 2 + n 6 + 4 n 2 + n 2 + n ∑ i = 1 n i 3 = n 4 + 2 n 3 + n 2 4 = n 2 ( n + 1 ) 2 4 \begin{aligned} (n+1)^4-1&=4\sum_{i=1}^ni^3+6\sum_{i=1}^ni^2+4\sum_{i=1}^ni+n\\ n^4+4n^3+6n^2+4n&=4\sum_{i=1}^ni^3+6\frac{2n^3+3n^2+n}{6}+4\frac{n^2+n}{2}+n\\ \sum_{i=1}^ni^3&=\frac{n^4+2n^3+n^2}{4}=\frac{n^2(n+1)^2}{4} \end{aligned} (n+1)41n4+4n3+6n2+4ni=1ni3=4i=1ni3+6i=1ni2+4i=1ni+n=4i=1ni3+662n3+3n2+n+42n2+n+n=4n4+2n3+n2=4n2(n+1)2这里有个好玩儿的结论
∑ i = 1 n i 3 = n 2 ( n + 1 ) 2 4 = ( n ( n + 1 ) 2 ) 2 = ( ∑ i = 1 n i ) 2 \sum_{i=1}^ni^3=\frac{n^2(n+1)^2}{4}=\Big(\frac{n(n+1)}{2}\Big)^2=\Big(\sum_{i=1}^ni\Big)^2 i=1ni3=4n2(n+1)2=(2n(n+1))2=(i=1ni)2

Another way

  首先介绍一个公式——分部求和公式
∑ k = 1 n a k b k = a n ∑ k = 1 n b k − ∑ j = 1 n − 1 ( ( a j + 1 − a j ) ∑ k = 1 j b k ) \sum_{k=1}^na_kb_k=a_n\sum_{k=1}^{n}b_k-\sum_{j=1}^{n-1}\Big( (a_{j+1}-a_j)\sum_{k=1}^{j}b_k\Big) k=1nakbk=ank=1nbkj=1n1((aj+1aj)k=1jbk)(emm,没听过. 嘶… 不过感觉跟分部积分差不多,对比下)
∫ u   d v = u v − ∫ v   d u \int u\,dv=uv-\int v\,du udv=uvvdu   积分和求和,本质上是一样的.
  将 ∑ \sum 看作 ∫ \displaystyle\int a k a_k ak 看作 u u u b k b_k bk 看作 d v dv dv,则 d u = a j + 1 − a j ,   v = ∑ j = 1 k b j \displaystyle du=a_{j+1}-a_j,\,v=\sum_{j=1}^{k}b_j du=aj+1aj,v=j=1kbj,两式等价.

  跟本文讨论的问题结合起来,将公式改造一下:

  取 a k = k a_k=k ak=k,则
∑ k = 1 n a k b k = a n ∑ k = 1 n b k − ∑ j = 1 n − 1 ( ( a j + 1 − a j ) ∑ k = 1 j b k ) = n ∑ k = 1 n b k − ∑ j = 1 n − 1 ∑ k = 1 j b k = n ∑ k = 1 n b k − ( ∑ j = 1 n ∑ k = 1 j b k − ∑ k = 1 n b k ) = ( n + 1 ) ∑ k = 1 n b k − ∑ j = 1 n ∑ k = 1 j b k \begin{aligned} \sum_{k=1}^na_kb_k&=a_n\sum_{k=1}^{n}b_k-\sum_{j=1}^{n-1}\Big( (a_{j+1}-a_j)\sum_{k=1}^{j}b_k\Big)\\&=n\sum_{k=1}^{n}b_k-\sum_{j=1}^{n-1}\sum_{k=1}^{j}b_k\\&=n\sum_{k=1}^{n}b_k-\Big(\sum_{j=1}^{n}\sum_{k=1}^{j}b_k-\sum_{k=1}^{n}b_k\Big)\\&=(n+1)\sum_{k=1}^{n}b_k-\sum_{j=1}^{n}\sum_{k=1}^{j}b_k \end{aligned} k=1nakbk=ank=1nbkj=1n1((aj+1aj)k=1jbk)=nk=1nbkj=1n1k=1jbk=nk=1nbk(j=1nk=1jbkk=1nbk)=(n+1)k=1nbkj=1nk=1jbk所以 ∑ k = 1 n k b k = ( n + 1 ) ∑ k = 1 n b k − ∑ j = 1 n ∑ k = 1 j b k \sum_{k=1}^n kb_k=(n+1)\sum_{k=1}^{n}b_k-\sum_{j=1}^{n}\sum_{k=1}^{j}b_k k=1nkbk=(n+1)k=1nbkj=1nk=1jbk

道生一

套用此式,令 b k = 1 b_k=1 bk=1,则
∑ k = 1 n k ⋅ 1 = ( n + 1 ) ∑ k = 1 n b k − ∑ j = 1 n ∑ k = 1 j b k = ( n + 1 ) n − ∑ j = 1 n j 2 ( ∑ k = 1 n k ) = n ( n + 1 ) ∑ k = 1 n k = n ( n + 1 ) 2 = n 2 + n 2 \begin{aligned} \sum_{k=1}^n k\cdot 1&=(n+1)\sum_{k=1}^{n}b_k-\sum_{j=1}^{n}\sum_{k=1}^{j}b_k\\&=(n+1)n-\sum_{j=1}^{n}j\\ 2\Big(\sum_{k=1}^n k\Big)&=n(n+1)\\ \sum_{k=1}^n k&=\frac{n(n+1)}{2}=\frac{n^2+n}{2} \end{aligned} k=1nk12(k=1nk)k=1nk=(n+1)k=1nbkj=1nk=1jbk=(n+1)nj=1nj=n(n+1)=2n(n+1)=2n2+n

一生二

b k = k b_k=k bk=k,则
∑ k = 1 n k ⋅ k = ( n + 1 ) ∑ k = 1 n b k − ∑ j = 1 n ∑ k = 1 j b k = ( n + 1 ) ∑ k = 1 n k − ∑ j = 1 n j ( j + 1 ) 2 = ( n + 1 ) ∑ k = 1 n k − 1 2 ∑ k = 1 n k − 1 2 ∑ k = 1 n k 2 3 2 ∑ k = 1 n k 2 = ( n + 1 2 ) ∑ k = 1 n k = ( n + 1 2 ) n ( n + 1 ) 2 = n ( n + 1 ) ( 2 n + 1 ) 4 ∑ k = 1 n k 2 = n ( n + 1 ) ( 2 n + 1 ) 6 = 2 n 3 + 3 n 2 + n 6 \begin{aligned} \sum_{k=1}^n k\cdot k&=(n+1)\sum_{k=1}^{n}b_k-\sum_{j=1}^{n}\sum_{k=1}^{j}b_k\\&=(n+1)\sum_{k=1}^{n}k-\sum_{j=1}^{n}\frac{j(j+1)}{2}\\ &=(n+1)\sum_{k=1}^{n}k-\frac{1}{2}\sum_{k=1}^{n}k-\frac{1}{2}\sum_{k=1}^{n}k^2\\ \frac{3}{2}\sum_{k=1}^n k^2&=(n+\frac{1}{2})\sum_{k=1}^{n}k\\&=(n+\frac{1}{2})\frac{n(n+1)}{2}\\&=\frac{n(n+1)(2n+1)}{4}\\ \sum_{k=1}^n k^2&=\frac{n(n+1)(2n+1)}{6}=\frac{2n^3+3n^2+n}{6} \end{aligned} k=1nkk23k=1nk2k=1nk2=(n+1)k=1nbkj=1nk=1jbk=(n+1)k=1nkj=1n2j(j+1)=(n+1)k=1nk21k=1nk21k=1nk2=(n+21)k=1nk=(n+21)2n(n+1)=4n(n+1)(2n+1)=6n(n+1)(2n+1)=62n3+3n2+n

二生三

b k = k 2 b_k=k^2 bk=k2,则
∑ k = 1 n k ⋅ k 2 = ( n + 1 ) ∑ k = 1 n b k − ∑ j = 1 n ∑ k = 1 j b k = ( n + 1 ) ∑ k = 1 n k 2 − ∑ j = 1 n 2 j 3 + 3 j 2 + j 6 = ( n + 1 ) ∑ k = 1 n k 2 − 1 3 ∑ k = 1 n k 3 − 1 2 ∑ k = 1 n k 2 − 1 6 ∑ k = 1 n k 4 3 ∑ k = 1 n k 3 = ( n + 1 2 ) ∑ k = 1 n k 2 − 1 6 ∑ k = 1 n k = ( n + 1 2 ) n ( n + 1 ) ( 2 n + 1 ) 6 − 1 6 n ( n + 1 ) 2 = n 2 ( n + 1 ) 2 3 ∑ k = 1 n k 3 = n 2 ( n + 1 ) 2 4 \begin{aligned} \sum_{k=1}^nk\cdot k^2&=(n+1)\sum_{k=1}^{n}b_k-\sum_{j=1}^{n}\sum_{k=1}^{j}b_k\\&=(n+1)\sum_{k=1}^n k^2-\sum_{j=1}^{n}\frac{2j^3+3j^2+j}{6}\\&=(n+1)\sum_{k=1}^n k^2-\frac{1}{3}\sum_{k=1}^nk^3-\frac{1}{2}\sum_{k=1}^n k^2-\frac{1}{6}\sum_{k=1}^n k\\ \frac{4}{3}\sum_{k=1}^nk^3&=(n+\frac{1}{2})\sum_{k=1}^n k^2-\frac{1}{6}\sum_{k=1}^n k\\&=(n+\frac{1}{2})\frac{n(n+1)(2n+1)}{6}-\frac{1}{6}\frac{n(n+1)}{2}\\&=\frac{n^2(n+1)^2}{3}\\ \sum_{k=1}^nk^3&=\frac{n^2(n+1)^2}{4} \end{aligned} k=1nkk234k=1nk3k=1nk3=(n+1)k=1nbkj=1nk=1jbk=(n+1)k=1nk2j=1n62j3+3j2+j=(n+1)k=1nk231k=1nk321k=1nk261k=1nk=(n+21)k=1nk261k=1nk=(n+21)6n(n+1)(2n+1)612n(n+1)=3n2(n+1)2=4n2(n+1)2

三生万物

  上面介绍的两种方法都可以推广到 p p p 次方求和,有以下结论:
1 p + 2 p + 3 p + ⋯ + n p = ∑ i = 1 n i p = ∑ k = 1 p ( ∑ j = 0 k − 1 ( − 1 ) j C k j ( k − j ) p + 1 ) C n + 1 k + 1 1^{p}+2^{p}+3^{p}+\cdots+n^{p}=\sum_{i=1}^{n} i^{p}=\sum_{k=1}^{p}\left(\sum_{j=0}^{k-1}(-1)^{j} C_{k}^{j}(k-j)^{p+1}\right) C_{n+1}^{k+1} 1p+2p+3p++np=i=1nip=k=1p(j=0k1(1)jCkj(kj)p+1)Cn+1k+1其中 p p p 为任意正整数,可通过数学归纳法证明.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值