本文灵感来源于大一时的新生研讨课——仰教授的《信息与数学浅谈》
One way
道生一
令
j
=
n
−
i
j=n-i
j=n−i,则
∑
i
=
1
n
i
=
∑
j
=
1
n
(
n
+
1
−
j
)
=
∑
j
=
1
n
(
n
+
1
)
−
∑
j
=
1
n
j
=
n
(
n
+
1
)
−
∑
i
=
1
n
i
2
∑
i
=
1
n
i
=
n
(
n
+
1
)
∑
i
=
1
n
i
=
n
(
n
+
1
)
2
\begin{aligned}\sum_{i=1}^ni=\sum_{j=1}^n(n+1-j)&=\sum_{j=1}^n(n+1)-\sum_{j=1}^nj=n(n+1)-\sum_{i=1}^ni\\ 2\sum_{i=1}^ni&=n(n+1)\\ \sum_{i=1}^ni&=\frac{n(n+1)}{2} \end{aligned}
i=1∑ni=j=1∑n(n+1−j)2i=1∑nii=1∑ni=j=1∑n(n+1)−j=1∑nj=n(n+1)−i=1∑ni=n(n+1)=2n(n+1)这种做法想必大家都已经在高中学过了,下面来看另一种巧妙的做法
(
n
+
1
)
2
−
n
2
=
2
n
+
1
n
2
−
(
n
−
1
)
2
=
2
(
n
−
1
)
+
1
⋮
=
⋮
3
2
−
2
2
=
2
∗
2
+
1
2
2
−
1
2
=
2
∗
1
+
1
\begin{aligned} (n+1)^2-n^2&=2n+1\\ n^2-(n-1)^2&=2(n-1)+1\\ \vdots\quad&=\quad\vdots\\ 3^2-2^2&=2*2+1\\ 2^2-1^2&=2*1+1 \end{aligned}
(n+1)2−n2n2−(n−1)2⋮32−2222−12=2n+1=2(n−1)+1=⋮=2∗2+1=2∗1+1共
n
n
n 个等式,两边分别求和,
(
n
+
1
)
2
−
1
=
2
∑
i
=
1
n
i
+
n
n
2
+
2
n
=
2
∑
i
=
1
n
i
+
n
∑
i
=
1
n
i
=
n
2
+
n
2
\begin{aligned} (n+1)^2-1&=2\sum_{i=1}^ni+n\\ n^2+2n&=2\sum_{i=1}^ni+n\\ \sum_{i=1}^ni&=\frac{n^2+n}{2} \end{aligned}
(n+1)2−1n2+2ni=1∑ni=2i=1∑ni+n=2i=1∑ni+n=2n2+n
一生二
下面利用相同的方法,求自然数的平方和
(
n
+
1
)
3
−
n
3
=
3
n
2
+
3
n
+
1
n
3
−
(
n
−
1
)
3
=
3
(
n
−
1
)
2
+
3
(
n
−
1
)
+
1
⋮
=
⋮
3
3
−
2
3
=
3
∗
2
2
+
3
∗
2
+
1
2
3
−
1
3
=
3
∗
1
2
+
3
∗
1
+
1
\begin{aligned} (n+1)^3-n^3&=3n^2+3n+1\\ n^3-(n-1)^3&=3(n-1)^2+3(n-1)+1\\ \vdots\quad&=\quad\vdots\\ 3^3-2^3&=3*2^2+3*2+1\\ 2^3-1^3&=3*1^2+3*1+1 \end{aligned}
(n+1)3−n3n3−(n−1)3⋮33−2323−13=3n2+3n+1=3(n−1)2+3(n−1)+1=⋮=3∗22+3∗2+1=3∗12+3∗1+1两边求和
(
n
+
1
)
3
−
1
=
3
∑
i
=
1
n
i
2
+
3
∑
i
=
1
n
i
+
n
n
3
+
3
n
2
+
3
n
=
3
∑
i
=
1
n
i
2
+
3
n
2
+
n
2
+
n
∑
i
=
1
n
i
2
=
2
n
3
+
3
n
2
+
n
6
=
n
(
n
+
1
)
(
2
n
+
1
)
6
\begin{aligned} (n+1)^3-1&=3\sum_{i=1}^ni^2+3\sum_{i=1}^ni+n\\ n^3+3n^2+3n&=3\sum_{i=1}^ni^2+3\frac{n^2+n}{2}+n\\ \sum_{i=1}^ni^2&=\frac{2n^3+3n^2+n}{6}=\frac{n(n+1)(2n+1)}{6} \end{aligned}
(n+1)3−1n3+3n2+3ni=1∑ni2=3i=1∑ni2+3i=1∑ni+n=3i=1∑ni2+32n2+n+n=62n3+3n2+n=6n(n+1)(2n+1)这种巧妙的的解法是法国数学家帕斯卡
(Pascal)
\textrm{(Pascal)}
(Pascal) 想出来的.
二生三
立方和呢,我们也来做一下,
(
n
+
1
)
4
−
n
4
=
4
n
3
+
6
n
2
+
4
n
+
1
n
4
−
(
n
−
1
)
4
=
4
(
n
−
1
)
3
+
6
(
n
−
1
)
2
+
4
(
n
−
1
)
+
1
⋮
=
⋮
3
4
−
2
4
=
4
∗
2
3
+
6
∗
2
2
+
4
∗
2
+
1
2
4
−
1
4
=
4
∗
1
3
+
6
∗
1
2
+
4
∗
1
+
1
\begin{aligned} (n+1)^4-n^4&=4n^3+6n^2+4n+1\\ n^4-(n-1)^4&=4(n-1)^3+6(n-1)^2+4(n-1)+1\\ \vdots\quad&=\quad\vdots\\ 3^4-2^4&=4*2^3+6*2^2+4*2+1\\ 2^4-1^4&=4*1^3+6*1^2+4*1+1 \end{aligned}
(n+1)4−n4n4−(n−1)4⋮34−2424−14=4n3+6n2+4n+1=4(n−1)3+6(n−1)2+4(n−1)+1=⋮=4∗23+6∗22+4∗2+1=4∗13+6∗12+4∗1+1其中
(
n
+
1
)
4
(n+1)^4
(n+1)4 利用牛顿二项式展开,即
(
a
+
b
)
n
=
∑
p
=
0
n
C
n
p
a
p
b
n
−
p
(a+b)^n=\sum_{p=0}^nC_n^p\,a^p\,b^{n-p}
(a+b)n=p=0∑nCnpapbn−p两边相加,
(
n
+
1
)
4
−
1
=
4
∑
i
=
1
n
i
3
+
6
∑
i
=
1
n
i
2
+
4
∑
i
=
1
n
i
+
n
n
4
+
4
n
3
+
6
n
2
+
4
n
=
4
∑
i
=
1
n
i
3
+
6
2
n
3
+
3
n
2
+
n
6
+
4
n
2
+
n
2
+
n
∑
i
=
1
n
i
3
=
n
4
+
2
n
3
+
n
2
4
=
n
2
(
n
+
1
)
2
4
\begin{aligned} (n+1)^4-1&=4\sum_{i=1}^ni^3+6\sum_{i=1}^ni^2+4\sum_{i=1}^ni+n\\ n^4+4n^3+6n^2+4n&=4\sum_{i=1}^ni^3+6\frac{2n^3+3n^2+n}{6}+4\frac{n^2+n}{2}+n\\ \sum_{i=1}^ni^3&=\frac{n^4+2n^3+n^2}{4}=\frac{n^2(n+1)^2}{4} \end{aligned}
(n+1)4−1n4+4n3+6n2+4ni=1∑ni3=4i=1∑ni3+6i=1∑ni2+4i=1∑ni+n=4i=1∑ni3+662n3+3n2+n+42n2+n+n=4n4+2n3+n2=4n2(n+1)2这里有个好玩儿的结论
∑
i
=
1
n
i
3
=
n
2
(
n
+
1
)
2
4
=
(
n
(
n
+
1
)
2
)
2
=
(
∑
i
=
1
n
i
)
2
\sum_{i=1}^ni^3=\frac{n^2(n+1)^2}{4}=\Big(\frac{n(n+1)}{2}\Big)^2=\Big(\sum_{i=1}^ni\Big)^2
i=1∑ni3=4n2(n+1)2=(2n(n+1))2=(i=1∑ni)2
Another way
首先介绍一个公式——分部求和公式
∑
k
=
1
n
a
k
b
k
=
a
n
∑
k
=
1
n
b
k
−
∑
j
=
1
n
−
1
(
(
a
j
+
1
−
a
j
)
∑
k
=
1
j
b
k
)
\sum_{k=1}^na_kb_k=a_n\sum_{k=1}^{n}b_k-\sum_{j=1}^{n-1}\Big( (a_{j+1}-a_j)\sum_{k=1}^{j}b_k\Big)
k=1∑nakbk=ank=1∑nbk−j=1∑n−1((aj+1−aj)k=1∑jbk)(emm,没听过. 嘶… 不过感觉跟分部积分差不多,对比下)
∫
u
d
v
=
u
v
−
∫
v
d
u
\int u\,dv=uv-\int v\,du
∫udv=uv−∫vdu 积分和求和,本质上是一样的.
将
∑
\sum
∑ 看作
∫
\displaystyle\int
∫,
a
k
a_k
ak 看作
u
u
u,
b
k
b_k
bk 看作
d
v
dv
dv,则
d
u
=
a
j
+
1
−
a
j
,
v
=
∑
j
=
1
k
b
j
\displaystyle du=a_{j+1}-a_j,\,v=\sum_{j=1}^{k}b_j
du=aj+1−aj,v=j=1∑kbj,两式等价.
跟本文讨论的问题结合起来,将公式改造一下:
取
a
k
=
k
a_k=k
ak=k,则
∑
k
=
1
n
a
k
b
k
=
a
n
∑
k
=
1
n
b
k
−
∑
j
=
1
n
−
1
(
(
a
j
+
1
−
a
j
)
∑
k
=
1
j
b
k
)
=
n
∑
k
=
1
n
b
k
−
∑
j
=
1
n
−
1
∑
k
=
1
j
b
k
=
n
∑
k
=
1
n
b
k
−
(
∑
j
=
1
n
∑
k
=
1
j
b
k
−
∑
k
=
1
n
b
k
)
=
(
n
+
1
)
∑
k
=
1
n
b
k
−
∑
j
=
1
n
∑
k
=
1
j
b
k
\begin{aligned} \sum_{k=1}^na_kb_k&=a_n\sum_{k=1}^{n}b_k-\sum_{j=1}^{n-1}\Big( (a_{j+1}-a_j)\sum_{k=1}^{j}b_k\Big)\\&=n\sum_{k=1}^{n}b_k-\sum_{j=1}^{n-1}\sum_{k=1}^{j}b_k\\&=n\sum_{k=1}^{n}b_k-\Big(\sum_{j=1}^{n}\sum_{k=1}^{j}b_k-\sum_{k=1}^{n}b_k\Big)\\&=(n+1)\sum_{k=1}^{n}b_k-\sum_{j=1}^{n}\sum_{k=1}^{j}b_k \end{aligned}
k=1∑nakbk=ank=1∑nbk−j=1∑n−1((aj+1−aj)k=1∑jbk)=nk=1∑nbk−j=1∑n−1k=1∑jbk=nk=1∑nbk−(j=1∑nk=1∑jbk−k=1∑nbk)=(n+1)k=1∑nbk−j=1∑nk=1∑jbk所以
∑
k
=
1
n
k
b
k
=
(
n
+
1
)
∑
k
=
1
n
b
k
−
∑
j
=
1
n
∑
k
=
1
j
b
k
\sum_{k=1}^n kb_k=(n+1)\sum_{k=1}^{n}b_k-\sum_{j=1}^{n}\sum_{k=1}^{j}b_k
k=1∑nkbk=(n+1)k=1∑nbk−j=1∑nk=1∑jbk
道生一
套用此式,令
b
k
=
1
b_k=1
bk=1,则
∑
k
=
1
n
k
⋅
1
=
(
n
+
1
)
∑
k
=
1
n
b
k
−
∑
j
=
1
n
∑
k
=
1
j
b
k
=
(
n
+
1
)
n
−
∑
j
=
1
n
j
2
(
∑
k
=
1
n
k
)
=
n
(
n
+
1
)
∑
k
=
1
n
k
=
n
(
n
+
1
)
2
=
n
2
+
n
2
\begin{aligned} \sum_{k=1}^n k\cdot 1&=(n+1)\sum_{k=1}^{n}b_k-\sum_{j=1}^{n}\sum_{k=1}^{j}b_k\\&=(n+1)n-\sum_{j=1}^{n}j\\ 2\Big(\sum_{k=1}^n k\Big)&=n(n+1)\\ \sum_{k=1}^n k&=\frac{n(n+1)}{2}=\frac{n^2+n}{2} \end{aligned}
k=1∑nk⋅12(k=1∑nk)k=1∑nk=(n+1)k=1∑nbk−j=1∑nk=1∑jbk=(n+1)n−j=1∑nj=n(n+1)=2n(n+1)=2n2+n
一生二
令
b
k
=
k
b_k=k
bk=k,则
∑
k
=
1
n
k
⋅
k
=
(
n
+
1
)
∑
k
=
1
n
b
k
−
∑
j
=
1
n
∑
k
=
1
j
b
k
=
(
n
+
1
)
∑
k
=
1
n
k
−
∑
j
=
1
n
j
(
j
+
1
)
2
=
(
n
+
1
)
∑
k
=
1
n
k
−
1
2
∑
k
=
1
n
k
−
1
2
∑
k
=
1
n
k
2
3
2
∑
k
=
1
n
k
2
=
(
n
+
1
2
)
∑
k
=
1
n
k
=
(
n
+
1
2
)
n
(
n
+
1
)
2
=
n
(
n
+
1
)
(
2
n
+
1
)
4
∑
k
=
1
n
k
2
=
n
(
n
+
1
)
(
2
n
+
1
)
6
=
2
n
3
+
3
n
2
+
n
6
\begin{aligned} \sum_{k=1}^n k\cdot k&=(n+1)\sum_{k=1}^{n}b_k-\sum_{j=1}^{n}\sum_{k=1}^{j}b_k\\&=(n+1)\sum_{k=1}^{n}k-\sum_{j=1}^{n}\frac{j(j+1)}{2}\\ &=(n+1)\sum_{k=1}^{n}k-\frac{1}{2}\sum_{k=1}^{n}k-\frac{1}{2}\sum_{k=1}^{n}k^2\\ \frac{3}{2}\sum_{k=1}^n k^2&=(n+\frac{1}{2})\sum_{k=1}^{n}k\\&=(n+\frac{1}{2})\frac{n(n+1)}{2}\\&=\frac{n(n+1)(2n+1)}{4}\\ \sum_{k=1}^n k^2&=\frac{n(n+1)(2n+1)}{6}=\frac{2n^3+3n^2+n}{6} \end{aligned}
k=1∑nk⋅k23k=1∑nk2k=1∑nk2=(n+1)k=1∑nbk−j=1∑nk=1∑jbk=(n+1)k=1∑nk−j=1∑n2j(j+1)=(n+1)k=1∑nk−21k=1∑nk−21k=1∑nk2=(n+21)k=1∑nk=(n+21)2n(n+1)=4n(n+1)(2n+1)=6n(n+1)(2n+1)=62n3+3n2+n
二生三
令
b
k
=
k
2
b_k=k^2
bk=k2,则
∑
k
=
1
n
k
⋅
k
2
=
(
n
+
1
)
∑
k
=
1
n
b
k
−
∑
j
=
1
n
∑
k
=
1
j
b
k
=
(
n
+
1
)
∑
k
=
1
n
k
2
−
∑
j
=
1
n
2
j
3
+
3
j
2
+
j
6
=
(
n
+
1
)
∑
k
=
1
n
k
2
−
1
3
∑
k
=
1
n
k
3
−
1
2
∑
k
=
1
n
k
2
−
1
6
∑
k
=
1
n
k
4
3
∑
k
=
1
n
k
3
=
(
n
+
1
2
)
∑
k
=
1
n
k
2
−
1
6
∑
k
=
1
n
k
=
(
n
+
1
2
)
n
(
n
+
1
)
(
2
n
+
1
)
6
−
1
6
n
(
n
+
1
)
2
=
n
2
(
n
+
1
)
2
3
∑
k
=
1
n
k
3
=
n
2
(
n
+
1
)
2
4
\begin{aligned} \sum_{k=1}^nk\cdot k^2&=(n+1)\sum_{k=1}^{n}b_k-\sum_{j=1}^{n}\sum_{k=1}^{j}b_k\\&=(n+1)\sum_{k=1}^n k^2-\sum_{j=1}^{n}\frac{2j^3+3j^2+j}{6}\\&=(n+1)\sum_{k=1}^n k^2-\frac{1}{3}\sum_{k=1}^nk^3-\frac{1}{2}\sum_{k=1}^n k^2-\frac{1}{6}\sum_{k=1}^n k\\ \frac{4}{3}\sum_{k=1}^nk^3&=(n+\frac{1}{2})\sum_{k=1}^n k^2-\frac{1}{6}\sum_{k=1}^n k\\&=(n+\frac{1}{2})\frac{n(n+1)(2n+1)}{6}-\frac{1}{6}\frac{n(n+1)}{2}\\&=\frac{n^2(n+1)^2}{3}\\ \sum_{k=1}^nk^3&=\frac{n^2(n+1)^2}{4} \end{aligned}
k=1∑nk⋅k234k=1∑nk3k=1∑nk3=(n+1)k=1∑nbk−j=1∑nk=1∑jbk=(n+1)k=1∑nk2−j=1∑n62j3+3j2+j=(n+1)k=1∑nk2−31k=1∑nk3−21k=1∑nk2−61k=1∑nk=(n+21)k=1∑nk2−61k=1∑nk=(n+21)6n(n+1)(2n+1)−612n(n+1)=3n2(n+1)2=4n2(n+1)2
三生万物
上面介绍的两种方法都可以推广到
p
p
p 次方求和,有以下结论:
1
p
+
2
p
+
3
p
+
⋯
+
n
p
=
∑
i
=
1
n
i
p
=
∑
k
=
1
p
(
∑
j
=
0
k
−
1
(
−
1
)
j
C
k
j
(
k
−
j
)
p
+
1
)
C
n
+
1
k
+
1
1^{p}+2^{p}+3^{p}+\cdots+n^{p}=\sum_{i=1}^{n} i^{p}=\sum_{k=1}^{p}\left(\sum_{j=0}^{k-1}(-1)^{j} C_{k}^{j}(k-j)^{p+1}\right) C_{n+1}^{k+1}
1p+2p+3p+⋯+np=i=1∑nip=k=1∑p(j=0∑k−1(−1)jCkj(k−j)p+1)Cn+1k+1其中
p
p
p 为任意正整数,可通过数学归纳法证明.