第三章-看涨、看跌期权的性质-3.2-看涨看跌期权的平价原理

期权平价原理,亦称买入卖出平价原理

在无红利条件下,我们有:
(3.1) C t E u ( K , T ; S ) + B t ( T ) K = P t E u ( K , T ; S ) + S C_{t}^{Eu}(K,T;S)+B_{t}(T)K=P_{t}^{Eu}(K,T;S)+S \tag{3.1} CtEu(K,T;S)+Bt(T)K=PtEu(K,T;S)+S(3.1)

这个证明怎么证明呢?我们先想想再看答案。
我们考虑两个组合:
买 入 执 行 价 为 K 的 看 涨 期 权 和 本 金 为 K 的 无 息 债 券 买入执行价为K的看涨期权和本金为K的无息债券 KK
买 入 执 行 价 为 K 的 看 跌 期 权 和 股 票 买入执行价为K的看跌期权和股票 K
它们在到期日的收益函数为
m a x ( S T − K , 0 ) + K = m a x ( S T , K ) = m a x ( K − S T , 0 ) + S T max(S_{T}-K,0)+K=max(S_{T},K)=max(K-S_{T},0)+S_{T} max(STK,0)+K=max(ST,K)=max(KST,0)+ST
即收益函数一样。从而根据无套利原理,有:
C t E u ( K , T ; S t ) + B t ( T ) K = P t E u ( K , T ; S t ) + S t C_{t}^{Eu}(K,T;S_t)+B_t(T)K=P_{t}^{Eu}(K,T;S_t)+S_t CtEu(K,T;St)+Bt(T)K=PtEu(K,T;St)+St
我们把债券的本金贴现到现在是因为今天的债券的价格不是 K K K,而是 B t ( T ) K B_t(T)K Bt(T)K。另外看涨、看跌期权中的价格都含有贴现因子.

期权平价原理的金融解释:假定债券本金和期权行权价格相等,看跌期权加上股票等效于看涨期权加上债券。

它始终成立,否则有套利存在。

若我们知道其中一个期权的价格,我们就可以算出另外一个。

推论:如果 B t ( T ) K B_t(T)K Bt(T)K=S,就是说期权执行价格等于远期价格,看涨期权价值等于看跌期权价值。

一道题目:如果利率是零,股票现价100,执行价100的看涨期权5元,那么执行价格100元的看跌期权多少呢?

另一个定理

D D D为时间区间 ( t , T ) (t,T) (t,T)内股票红利的折现,我们有:
C t E u ( K , T ; S ) + B t ( T ) K = P t E u ( K , T ; S ) + S − D C_{t}^{Eu}(K,T;S)+B_t(T)K=P_{t}^{Eu}(K,T;S)+S-D CtEu(K,T;S)+Bt(T)K=PtEu(K,T;S)+SD

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fgh431

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值