期权平价原理,亦称买入卖出平价原理
在无红利条件下,我们有:
(3.1)
C
t
E
u
(
K
,
T
;
S
)
+
B
t
(
T
)
K
=
P
t
E
u
(
K
,
T
;
S
)
+
S
C_{t}^{Eu}(K,T;S)+B_{t}(T)K=P_{t}^{Eu}(K,T;S)+S \tag{3.1}
CtEu(K,T;S)+Bt(T)K=PtEu(K,T;S)+S(3.1)
这个证明怎么证明呢?我们先想想再看答案。
我们考虑两个组合:
买
入
执
行
价
为
K
的
看
涨
期
权
和
本
金
为
K
的
无
息
债
券
买入执行价为K的看涨期权和本金为K的无息债券
买入执行价为K的看涨期权和本金为K的无息债券
买
入
执
行
价
为
K
的
看
跌
期
权
和
股
票
买入执行价为K的看跌期权和股票
买入执行价为K的看跌期权和股票
它们在到期日的收益函数为
m
a
x
(
S
T
−
K
,
0
)
+
K
=
m
a
x
(
S
T
,
K
)
=
m
a
x
(
K
−
S
T
,
0
)
+
S
T
max(S_{T}-K,0)+K=max(S_{T},K)=max(K-S_{T},0)+S_{T}
max(ST−K,0)+K=max(ST,K)=max(K−ST,0)+ST
即收益函数一样。从而根据无套利原理,有:
C
t
E
u
(
K
,
T
;
S
t
)
+
B
t
(
T
)
K
=
P
t
E
u
(
K
,
T
;
S
t
)
+
S
t
C_{t}^{Eu}(K,T;S_t)+B_t(T)K=P_{t}^{Eu}(K,T;S_t)+S_t
CtEu(K,T;St)+Bt(T)K=PtEu(K,T;St)+St
我们把债券的本金贴现到现在是因为今天的债券的价格不是
K
K
K,而是
B
t
(
T
)
K
B_t(T)K
Bt(T)K。另外看涨、看跌期权中的价格都含有贴现因子.
期权平价原理的金融解释:假定债券本金和期权行权价格相等,看跌期权加上股票等效于看涨期权加上债券。
它始终成立,否则有套利存在。
若我们知道其中一个期权的价格,我们就可以算出另外一个。
推论:如果 B t ( T ) K B_t(T)K Bt(T)K=S,就是说期权执行价格等于远期价格,看涨期权价值等于看跌期权价值。
一道题目:如果利率是零,股票现价100,执行价100的看涨期权5元,那么执行价格100元的看跌期权多少呢?
另一个定理
令
D
D
D为时间区间
(
t
,
T
)
(t,T)
(t,T)内股票红利的折现,我们有:
C
t
E
u
(
K
,
T
;
S
)
+
B
t
(
T
)
K
=
P
t
E
u
(
K
,
T
;
S
)
+
S
−
D
C_{t}^{Eu}(K,T;S)+B_t(T)K=P_{t}^{Eu}(K,T;S)+S-D
CtEu(K,T;S)+Bt(T)K=PtEu(K,T;S)+S−D