【HDL系列】除法器(3)——基2 SRT算法

本文详细介绍了基2 SRT算法,一种用于加速非恢复二进制除法的方法。通过引入0到商数选择集,减少除法模块的平均延时。内容包括除法表示、数字递归算法基础、QDS函数的原理和基2 SRT算法的具体实现,以及一个除法实例。此外,还讨论了基2 SRT在硬件实现上的优势。
摘要由CSDN通过智能技术生成

目录

一、除法表示

二、数字递归算法基础公式

三、QDS(Quotient Digit Selection)函数

四、基2 SRT算法


一、除法表示

除法被定义如下:

其中,x是被除数,d是除数,q是商,rem是余数。

商的精度由ulp(unit of last position)来决定:

    如果ulp=1, 商q则是整数;

    如果ulp=r^(-n),n是商数个数,r是所有输入操作数的基,此时商为小数。

二、数字递归算法基础公式

在使用数字递归算法(Digit Recurrence Algorithms)进行除法操作时迭代n次,每次迭代中产生基r的商,其中商的最高位先产生。经过j+1次迭代后,商表示如下:

经过n次迭代后除法完成,产生了n个商数,商q表示为:

最终q的误差需小于ulp,所以:

在第j+1次迭代中,每一步中产生的误差为:

重新组合上式,两式各乘以d和r的j+1次得:

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值