【MCP-1】MCP是什么,从DEMO入手

一、MCP 是什么?

想象一下,AI 大模型就像是一个超级聪明但有时候有点 “摸不着头脑” 的小伙伴。它很厉害,能处理很多信息、回答各种问题,但它和外界的数据、工具等沟通起来有时候没那么顺畅呀。这时候,MCP 就闪亮登场啦!
MCP 的全称是 Model Context Protocol,也就是模型上下文协议。它是由 Claude 的母公司 Anthropic 在 2024 年 11 月 25 日推出的,就像是 AI 大模型的一个标准化工具箱哦,你可以把它想象成 AI 大模型和外部数据、工具之间沟通的 “通用语言” 或者 “万能插座” 呢。它能帮助大模型和外部的数据、工具建立起联系,让大模型可以去访问和操作这些外部的东西,从而完成各种各样具体的任务。
在这里插入图片描述

二、MCP能干啥?

有的 MCP 服务(也叫 MCP Server)能专门负责读写浏览器里的信息,有的可以负责读写本地文件,还有的能操作 git 仓库等等。这些 MCP Server 通常就是运行在本地的一段 nodejs 或者 python 程序哦。
当大模型要做一件事,比如在 AI 驱动的 IDE 中写完代码后想直接向 GitHub 提交 Pull Request,它就可以通过操作系统的 stdio(标准输入通道)去调用某个 MCP Server。MCP Server 接到请求后,就会通过自己的代码功能,或者去使用 API 请求,来访问外部工具,最终完成任务呢。
简单来说,MCP就是AI的“万能接口”。有了它,AI模型就能像插上USB-C线一样,轻松连接到各种外部数据源和工具,变得更聪明、更实用。不管是开发者还是普通用户,都能通过MCP让AI干更多事,而且过程简单又安全。未来随着MCP的普及,我们可能会看到更多酷炫的AI应用冒出来!

三、MCP和Function Call的区别

MCP 是统一标准协议,集合各模型 function call 标准,解决 AI 连接万物通用性问题,类似 “USB-C 接口”;Function Call 是大模型调用外部函数等的机制,扩展模型能力,像特定手机 “专属充电协议”。一句话总结就是:MCP 是通用标准搞连接,Function Call 是模型专属做扩展。
在这里插入图片描述

四、MCP server DEMO

  1. 使用conda,创建虚拟环境。如果没有安装,可以看这篇文章AI开发利器:miniforge3无感平替Anaconda3
conda create -n my_env python=3.11
conda activate mcp_server
  1. 创建MCPserver工程
pip install uv
uv init mcp-server-example

创建完成后生成相应工程目录如下
在这里插入图片描述

其中pyproject.toml文件内容:

[project]
name = "mcp-server-example"
version = "0.1.0"
description = "Add your description here"
readme = "README.md"
requires-python = ">=3.11"
dependencies = []
  1. 按照项目依赖
cd mcp-server-example
# 安装 dependencies
uv add mcp[cli] httpx
  1. 创建文件simple.py
from mcp.server.fastmcp import FastMCP

mcp = FastMCP("Simple Server")


@mcp.tool()
def add(a: int, b: int) -> int:
    """Add两个数字"""
    return a + b


@mcp.resource("greeting://{name}")
def get_greeting(name: str) -> str:
    """获取个性化问候"""
    return f"Hello, {name}!"


if __name__ == "__main__":
    # 初始化并运行 server
    print('mcp服务器启动')
    mcp.run(transport="stdio")

  1. 启动程序
    uv run simple.py
    但是这种启动怎么测试呢,确实不方便!

五、调试服务器

MCP Inspector 是专为 Model Context Protocol(MCP)服务器设计的交互式调试工具,支持开发者通过多种方式快速测试与优化服务端功能。

  1. 安装mcp
pip install mcp[cli]
  1. 执行命令
mcp dev simple.py

--------------输出----------------------------------------
-Starting MCP inspector...
-⚙️ Proxy server listening on port 6277
-🔍 MCP Inspector is up and running at http://127.0.0.1:6274
-------------------------------------------------------------
  1. 浏览器访问链接:http://127.0.0.1:6274
    在这里插入图片描述

  2. 接下来点击对应的资源和工具,进行测试吧。
    在这里插入图片描述
    在这里插入图片描述

参考文献

  1. 解构Manus AI:这是通用Agent革命,还是精巧缝合怪?
  2. MCP快速开始-面向服务器开发者
  3. MCP Server 开发实战:无缝对接 LLM 和 Elasticsearch
  4. MCP:跨越AI模型与现实的桥梁
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zhulangfly

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值