光耦控制双向可控硅
01 可控硅控制
一、前言
前面测试了一个小型双向可控硅的特性。 为了能够使用单片机控制该可控硅, 准备使用普通的光耦替换原来的调节电位器。 下面通过实验测试这种方案是否可行。 以及对应光耦输出PWM 占空比与输出电压之间的关系。 这个方案可以用于将来一些需要进行自动控制的场合。
二、电路设计
设计测试电路。 单片机为 AT32F421。 使用两个正反相反的光耦作为电阻控制。 每个光耦都是四个串联, 这样可以使得输出耐压从原来的 150V提高到450V。 串联二极管是防止光耦反向被击穿。 外部设置一个 AD输入, 用于手工设置 PWM 的占空波。 铺设PCB, 使用单面铺设线路, 适合一分钟制板。 一分钟之后得到测试电路板。 电路板制作中存在着小小的瑕疵。 这个不行, 那就再重新花费一分钟制作一块。
AD\Test\2024\May\TriacF421.PcbDoc
▲ 图1.2.1 测试电路原理图
▲ 图1.2.2 测试电路PCB
对电路进行焊接。 焊接之后进行清洗。 下面, 把电路板放置在调试夹子上。 对电路进行软件测试。
三、软件测试
利用 Workbench 生成测试程序框架。 使用 DAP-LINK 进行程序下载。 下载LED闪烁程序之后, 软件运行正常。 这说明电路硬件中没有 BUG了。
配置单片机的 TIME1, 使其输出 PWM波形。 设置频率为 1kHz, 占空比为50%。 测量输出的PWM 信号。 波形的频率和占空比与设置参数相同。
测量光耦驱动信号, 使用了8050 NPN 三极管进行驱动。 三极管的集电极信号与PWM信号之间是反向的。
下面, 利用 ADC读入电位器的电压。 改变输出PWM的占空比。 可以看到它们之间可以同步变化。 此时, PWM 波形的频率为 10kHz。
ARM\Keil\AT32\Application\2024\May\TriacF421\project\MDK_V5\TriacF421.uvprojx
四、测试可控硅模块
为了使用光耦控制双向可控硅, 先将可控硅模块上的调压电位器拆卸下来。 电位器的阻值为 450k欧姆左右。 将光耦输出通过导线连接到电位器的接口。 替换电位器。 通过隔离变压器提供 80V左右测试交流电。 在可控硅输出连接 470欧姆的功率电阻作为。 此时, 可以看到可控硅模块已经有了交流输出了。 通过调节电位器, 改变PWM的占空比, 进而控制输出电压波形。 至此, 验证了光耦替代电位器是可行的。
通过编程, 设置光耦PWM的不同的占空比, 测试输出波形中的交流有效值, 测试一下占空比与输出电压之间的关系。 占空比从 0 逐步变化到30%, 记录100个数据。 测量数据显示, PWM 占空比与输出电压交流有效值之间不是一个线性关系。
#!/usr/local/bin/python
# -*- coding: gbk -*-
#============================================================
# TEST1.PY -- by Dr. ZhuoQing 2024-05-28
#
# Note:
#============================================================
from headm import *
from tsmodule.tsstm32 import *
pwm = range(0, 300, 3)
vdim = []
for p in pwm:
stm32cmd("pwm %d"%p)
time.sleep(2)
meter = meterval()
printff(p, meter)
vdim.append(meter[0])
tspsave('pwm', pwm=pwm, vdim=vdim)
plt.plot(pwm, vdim, lw=3)
plt.xlabel("PWM")
plt.ylabel("voltage")
plt.grid(True)
plt.tight_layout()
plt.show()
#------------------------------------------------------------
# END OF FILE : TEST1.PY
#============================================================
pwm=[0.0000,3.0000,6.0000,9.0000,12.0000,15.0000,18.0000,21.0000,24.0000,27.0000,30.0000,33.0000,36.0000,39.0000,42.0000,45.0000,48.0000,51.0000,54.0000,57.0000,60.0000,63.0000,66.0000,69.0000,72.0000,75.0000,78.0000,81.0000,84.0000,87.0000,90.0000,93.0000,96.0000,99.0000,102.0000,105.0000,108.0000,111.0000,114.0000,117.0000,120.0000,123.0000,126.0000,129.0000,132.0000,135.0000,138.0000,141.0000,144.0000,147.0000,150.0000,153.0000,156.0000,159.0000,162.0000,165.0000,168.0000,171.0000,174.0000,177.0000,180.0000,183.0000,186.0000,189.0000,192.0000,195.0000,198.0000,201.0000,204.0000,207.0000,210.0000,213.0000,216.0000,219.0000,222.0000,225.0000,228.0000,231.0000,234.0000,237.0000,240.0000,243.0000,246.0000,249.0000,252.0000,255.0000,258.0000,261.0000,264.0000,267.0000,270.0000,273.0000,276.0000,279.0000,282.0000,285.0000,288.0000,291.0000,294.0000,297.0000]
vdim=[1.5727,1.5763,1.5796,1.5873,1.5892,1.5931,1.5973,1.6032,1.6066,1.6104,1.6172,1.6221,1.6282,1.6312,1.6400,43.6320,48.8290,53.0650,56.4810,59.2720,61.3720,63.4060,65.1990,66.7950,68.1400,69.3310,70.4010,71.3020,72.1480,72.9230,73.6290,74.2500,74.8490,75.2810,75.8060,75.9590,76.6580,77.0430,77.3690,77.6570,77.9870,78.3000,78.6130,78.9230,79.1990,79.3260,79.5500,79.7430,79.8970,80.1000,80.2560,80.4130,80.5330,80.7360,80.8510,81.0130,81.1450,81.2950,81.4170,81.4880,81.5620,81.6540,81.7660,81.8960,81.9220,82.0400,82.1290,82.2830,82.3840,82.4110,82.4940,82.5680,82.6540,82.7110,82.7910,82.7880,82.8570,82.9250,82.9280,82.9840,83.0660,83.1110,83.1430,83.1690,83.1900,83.1400,83.2600,83.3180,83.3750,83.4560,83.5220,83.5510,83.6160,83.6090,83.6220,83.7130,74.0340,83.8220,80.0780,0.0025]
▲ 图1.4.1 设置不同的占空比,对应的输出电压有效值
将光耦串联的电阻从原来的 10k欧姆替换成 20k欧姆。 重新测试PWM 与输出电压之间的关系。 测试结果显示, 串联电阻的变化似乎对输出电压没有影响。
▲ 图1.4.2 输入输出电压波形

▲ 图1.4.3 将串联电阻修改成20k欧姆
将输入交流电压提高的 125V, 可以看到光耦的PWM占空比与输出交流电压之间的关系有了一些变化。 整体上还是一个非线性关系。
▲ 图1.4.4 将输入电压升高到 125V对应的PWM与输出电压的关系
将占空比从 30%降低到0%。 这个过程与占空比递增过程输出的电压基本上是重合的。 由此, 我们可以知道, 光耦的PWM 占空比, 与输出电压之间基本上是一一对应。 这种非线性, 使得利用电阻调节输出电压变得不那么容易了。 在控制过程中, 需要特别注意到这种非线性对控制稳定性的影响。
▲ 图1.4.5 占空比降低过程对应的输出电压
※ 总 结 ※
本文测试了利用光耦替代电位器, 控制双向可控硅的效果。 验证了它的可行性。 光耦的占空比与输出电压之间是一个非线性关系。
■ 相关文献链接:
● 相关图表链接: