B站相关视频
01 电位器
一、前言
这个电子器件, 有两个固定管脚和一个滑动管脚, 它叫变阻器或者电位器, 用于不同的场合。 两个固定端口之间的电阻为R, 滑动端至两个固定端之间的电阻, 等于整体的固定电阻。 它作为电位器通常用于对信号进行分压, 也可以将滑动端和某一个固定端用作一个变阻器。
如果有这么一个应用, 对一个信号源, 希望将它的信号进行分压之后传递给后面的放大器, 最适合的接线方式应该是这种电位器的应用模式。
但是,在有一种场合, 我们还见到过这种应用模式, 利用电阻器的模式来完成信号幅度的控制, 这种情况是否可行、 有什么好处吗?
首先, 这种应用场合存在吗? 这是一个分离元器件的话筒功率放大电路。 驻极体话筒与 R1的分压产生的音频信号 经过 C1耦合到电位器 RP1, 有意思的是, 这个电位器在这里的连接方式, 形成了一个变阻器的方式, 音频信号通过 C3进入后级进行功率放大。 那么, 进入后级信号的大小与电位器的中心位置是什么关系呢?
二、公式推导
音频放大电路中, 信号源与后级放大器都有输出和输入阻抗, 前级的阻抗假设为 1k欧姆, 后级放大器的输入阻抗假设为2k欧姆。 那么, 信号 U1 经过电位器之后到达放大器的信号为 U2, 它们之间的比值与电位器的分压比例之间是什么关系呢?
下面对电路进行简化, 根据电路拓扑关系, 信号分压网络包括有R01, R02, 电位器的一部分, 以及电位器的另外一部分。
利用电阻分压定理, 推导出信号U1, U2 之间的比例 与电位器分压比 P 之间的关系。 它们之间不再 是一个线性关系。
绘制电位器分压比与信号传输比之间的关系, 在开始的时候上升比较快, 中间部分变化缓慢, 最后阶段上升比较快。 最终的比值实际上是 R01在 R02与电位器并联电阻上的分压。 虽然电位器的比例与信号分压比之间不再是线性关系, 但仍然是单调关系。
▲ 图1.2.1 电位器的比例P与信号之间的关系
下面, 考虑正常的电位器模式, 它对应的信号分压比与电位器位置P之间的关系, 构建等效分压电路, 输入输出之间的比值函数也不是一个线性关系。 从形式上来看, 与前面分压关系很相似。
上面是变阻器模式的信号分压比与电位器位置P之间的函数关系, 下面是电位器模式下对应的函数关系。 对比两者之间的函数曲线, 可以看到它们之间非常相似。
▲ 图1.2.2 两种模式对应的信号分压比与电位器位置P之间的关系
from headm import *
pdim = linspace(0, 1, 200)
def f(p):
return 1666.6667*p/(-8333.3333*p**2+10000*p+1000)
def f1(p):
return 10*p/(-50*p**2+55*p+11)
odim = [f(p) for p in pdim]
o1dim = [f1(p) for p in pdim]
plt.plot(pdim, odim, lw=3, color='lightcoral', label='VAR')
plt.plot(pdim, o1dim, lw=3, color='slateblue', label='POT')
plt.xlabel("P")
plt.ylabel("U2/U1")
plt.grid(True)
plt.legend(loc='upper right')
plt.tight_layout()
plt.show()
※ 总 结 ※
本文对电路中信号分压所使用的电位器两种模式进行了分析。 通过理论分析可以知道, 这个电位器使用它的变阻器的方式, 也能够达到同样的效果。 在电路分析中, 需要考虑到信号源的内阻和放大器的输入电阻对信号的影响。
● 相关图表链接: