方波信号的谐波失真

信号的谐波失真

 

01 波的谐波失真


一、谐波失真

  对于周期信号, 除非是纯粹的正弦波形, 如果出现失真,  那么就会出现很多谐波。 在数学上可以通过傅里叶变换得到各个谐波的幅值。  定义周期信号的谐波失真, 实际上就是将除了基波之外的谐波进行叠加, 得到等效的有效值, 然后除以基波的有效值。  这样就可以得到失真的程度。 可以取对数之后乘以20, 使用dB 来表示。  基波通常是信号频谱中所有谐波对应频率的公约数。  其他谐波的频率都是基波的整数倍数。 总谐波失真可以将所有谐波幅度进行平方叠加之后, 除以基波的幅度来计算。   如果信号中还存在这其它非谐波噪声,   这样可以得到信号中谐波噪声总失真。

G11M1738681441_1920_1080.MP4|_-11

二、典型信号谐波失真

1、方波的谐波失真

  对于一个对称方波信号,   根据傅里叶级数分解,  可以得到它的谐波幅度。   可以看到, 它只具有奇次谐波, 所以这个信号也被称为奇谐信号。   根据谐波失真公式,  它对应的总谐波失真约为 0.483。  如果只计算它的三次谐波和五次谐波失真, 则对应失真大约为0.3887。  这是理论计算出的谐波失真结果。

G11M1738682353_1920_1080.MP4|_-11

2、对称三角波谐波失真

  改变一个波形,  对于连续对称三角波,   它的谐波幅度随着谐波分量的平方衰减,  它同样也是一个奇谐信号。  因为谐波衰减比较快,  所以对应的总谐波失真只有0.12115。  三次和五次谐波失真为 0.118

G11M1738682917_1920_1080.MP4|_-11

from headm import *

V = 0
for i in range(10000):
    v = 1/(2*(1+i)+1)
    V += v**4

printf(sqrt(V))

三、数值仿真

▲ 图1.3.1 50Hz方波信号,10k数据对应的波形

▲ 图1.3.1 50Hz方波信号,10k数据对应的波形

▲ 图1.3.2 2000Hz 以内的谐波分量

▲ 图1.3.2 2000Hz 以内的谐波分量

  这是一个50Hz,一秒之内的方波数据。 采样频率为 10kHz。 使用FFT计算出它的频谱。   通过程序, 计算对应的谐波失真。  最后, 得到谐波失真为 0.4834, 这与前面理论计算值是一样的。

G7M1738683979_1920_1080.MP4|_-7

四、不同频率对应的谐波失真

  将信号的频率, 从 5Hz变化到250Hz,  使用相同的方法, 计算出信号的频谱。  绘制出不同频率下方波的谐波失真。 可以看到计算结果出现了比较大的误差, 特别是在低频的时候, 谐波失真变化从 0.47 到 0.49, 与理论计算的谐波失真出现了比较大的误差。 为了改善谐波失真出现的仿真误差, 使用升余弦窗口对于数据进行加窗。  得到的谐波失真误差就非常小了。 请关注 一下, 计算数值变化范围是非常小的。 由此, 说明对数据进行加窗, 对于提高频谱分析的精度是非常重要的。
G5M1738686316_1920_1080.MP4|_-5

▲ 图1.4.1  从5Hz变化到250Hz的方波信号

▲ 图1.4.1 从5Hz变化到250Hz的方波信号

▲ 图1.4.2  不同频率方波的频谱

▲ 图1.4.2 不同频率方波的频谱

▲ 图1.4.3 计算信号的谐波失真
▲ 图1.4.3 计算信号的谐波失真

▲ 图1.4.4  添加升余弦窗口之后的信号数据波形

▲ 图1.4.4 添加升余弦窗口之后的信号数据波形

▲ 图1.4.5 添加升余弦窗口之后计算的结果

▲ 图1.4.5 添加升余弦窗口之后计算的结果

 

  结 ※


  文通过数值仿真的方法计算了方波信号的谐波失真。  使用数据加窗可以提高计算谐波失真的精度。

G2M1738686399_1920_1080.MP4|_-2


■ 相关文献链接:

● 相关图表链接:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

卓晴

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值