方波的基波和谐波详细推导,以及matlab验证[电路原理---2]

最近要滤波,从1KHZ 方波中获得正弦波,这让我们要对方波的频谱有具体的了解。虽然楼主一年前刚学过傅里叶。但也是忘的干干净净查阅资料后终于是整理出来。用漂亮的latex打出来了,为自己留存一份记录,也分享给大家学习。

方波的基波和谐波

复指数形式的傅里叶级数公式 - 对于周期为(T)的周期函数(f(t)),其复指数形式的傅里叶级数展开式为
f ( t ) = ∑ n = − ∞ ∞ F n e j n ω 0 t f(t)=\sum_{n = -\infty}^{\infty}F_{n}e^{jn\omega_{0}t} f(t)=n=Fnejnω0t
_其中
ω 0 = 2 π T \omega_{0}=\frac{2\pi}{T} ω0=T2π
_系数
F n = 1 T ∫ − T / 2 T / 2 f ( t ) e − j n ω 0 t d t F_{n}=\frac{1}{T}\int_{-T/2}^{T/2}f(t)e^{-jn\omega_{0}t}dt Fn=T1T/2T/2f(t)ejnω0tdt

对于1kHz方波的分析 - 已知方波周期(T = 10^{-3}s),
KaTeX parse error: Undefined control sequence: \ at position 34: …imes10^{3}rad/s\̲ ̲
设方波函数(f(t))在一个周期内为

f ( t ) = { A , 0 ≤ t ≤ T 2 − A , T 2 < t ≤ T f(t)=\left\{\begin{matrix}A, &0\leq t\leq\frac{T}{2}\\ -A, &\frac{T}{2}\lt t\leq T\end{matrix}\right. f(t)={A,A,0t2T2T<tT

  • 计算系数(F_{n}):
    F n = 1 T ∫ − T / 2 T / 2 f ( t ) e − j n ω 0 t d t = 1 T ( ∫ 0 T / 2 A e − j n ω 0 t d t + ∫ T / 2 T ( − A ) e − j n ω 0 t d t ) F_{n}=\frac{1}{T}\int_{-T/2}^{T/2}f(t)e^{-jn\omega_{0}t}dt=\frac{1}{T}\left(\int_{0}^{T/2}Ae^{-jn\omega_{0}t}dt+\int_{T/2}^{T}(-A)e^{-jn\omega_{0}t}dt\right) Fn=T1T/2T/2f(t)ejnω0tdt=T1(0T/2Aejnω0tdt+T/2T(A)ejnω0tdt)

    ∫ T / 2 T ( − A ) e − j n ω 0 t d t = A j n ω 0 ( e − j n 2 π − e − j n π ) \int_{T/2}^{T}(-A)e^{-jn\omega_{0}t}dt=\frac{A}{jn\omega_{0}}\left(e^{-jn2\pi}-e^{-jn\pi}\right) T/2T(A)ejnω0tdt=jnω0A(ejn2πejnπ)

    F n = 1 T [ − A j n ω 0 ( e − j n π − 1 ) + A j n ω 0 ( e − j n 2 π − e − j n π ) ] F_{n}=\frac{1}{T}\left[-\frac{A}{jn\omega_{0}}\left(e^{-jn\pi}- 1\right)+\frac{A}{jn\omega_{0}}\left(e^{-jn2\pi}-e^{-jn\pi}\right)\right] Fn=T1[jnω0A(ejnπ1)+jnω0A(ejn2πejnπ)]

  • 化简
    F n = A j n π ( 1 − e − j n π ) F_n= \frac{A}{jn \pi} (1-e^{-jn \pi}) Fn=jnπA(1ejnπ)

  • 讨论
    F o d d = A j n π ( 1 − ( − 1 ) n ) = A j n π ( 1 − ( − 1 ) o d d ) = 2 A j n π F_{odd}=\frac{A}{jn \pi}(1- (-1)^n)=\frac{A}{jn \pi}(1- (-1)^{odd})=\frac{2A}{jn \pi} Fodd=jnπA(1(1)n)=jnπA(1(1)odd)=jnπ2A

    F e v e n = A j n π ( 1 − ( − 1 ) n ) = A j n π ( 1 − ( − 1 ) e v e n ) = 0 F_{even}=\frac{A}{jn \pi}(1- (-1)^n)=\frac{A}{jn \pi}(1- (-1)^{even})=0 Feven=jnπA(1(1)n)=jnπA(1(1)even)=0

  1. 方波的复指数形式傅里叶级数展开式 - 所以(
    KaTeX parse error: Undefined control sequence: \ at position 124: …{jn\omega_{0}t}\̲ ̲
    基波频率
    ω 1 = ω 0 = 2 π × 1 0 3 r a d / s \omega_{1}=\omega_{0}=2\pi\times10^{3}rad/s ω1=ω0=2π×103rad/s
    对应的频率
    f 1 = 1 k H z , 谐 波 频 率 为 n ω 0 ( n = 3 , 5 , 7 , ⋯   ) f_{1}=1kHz,谐波频率为n\omega_{0}(n = 3,5,7,\cdots) f1=1kHznω0(n=3,5,7,)
    在电子信息中,这种复指数形式的傅里叶级数方便分析信号的频谱等特性,,可以了解信号在不同频率成分上的分布情况。例如,幅度
    ∣ F n ∣ = 2 A ∣ n ∣ π ( n 为 奇 数 ) \vert F_{n}\vert=\frac{2A}{\vert n\vert\pi}(n为奇数) Fn=nπ2A(n)
    表示了各频率成分的强度。
matlab代码验证
% 参数设置
Fs = 100e3;       % 采样频率 (100 kHz)
T = 1/Fs;         % 采样周期
t = 0:T:1-T;      % 时间向量 (1秒)
f1 = 1e3;         % 基波频率 (1 kHz)

% 生成 1 kHz 方波信号
square_wave = square(2*pi*f1*t);

% 计算 FFT
L = length(square_wave);  % 信号长度
Y = fft(square_wave);     % 计算 FFT
P2 = abs(Y/L);            % 双边频谱
P1 = P2(1:L/2+1);         % 单边频谱


% 频率向量
f = Fs*(0:(L/2))/L;       % 频率向量

% 绘制频谱图
figure;
plot(f, P1);
title('1 kHz 方波信号的频谱');
xlabel('频率 (Hz)');
ylabel('|P1(f)|');
grid on;

在这里插入图片描述

可以看出,0.63658强度的1KHZ基波和0.211强度的3次谐波都是如我们计算的这样

<think>嗯,用户想了解方波如何由奇次谐波叠加的原理。首先,我需要回忆傅里叶级数的相关知识。方波是一种周期信号,可以用傅里叶级数展开。根据傅里叶分析,任何周期函数都可以分解为不同频率的正弦和余弦函数的叠加。 那方波具体是怎么分解的呢?我记得方波只包含奇次谐波,比如基频、三次、五次等。为什么只有奇数次呢?可能是因为方波的对称性。比如,方波是奇函数,所以它的傅里叶级数中只有正弦项,而余弦项会被消去。同时,由于方波的半波对称性,偶次谐波会被抵消,只剩下奇次谐波。 接下来需要解释具体的展开过程。方波的傅里叶级数表达式应该是这样的:由多个正弦波组成,每个的频率是基频的奇数倍,振幅则是1/n的比例递减。例如,基波是sin(ωt),三次谐波是sin(3ωt)/3,五次是sin(5ωt)/5,依此类推。将这些波叠加起来,随着谐波数量的增加,合成的波形会越来越接近方波。 还要考虑吉布斯现象,也就是在方波的跳变点附近,即使加入很多谐波,仍然会有过冲和震荡。这可能是因为高频分量无法完全消除导致的。 用户提供的引用中,引用1提到方波只含奇次谐波,引用2和4展示了通过叠加谐波逼近方波的过程,引用3则涉及谐波的应用实例。这些都可以作为支持材料,说明实际应用中谐波叠加的效果和相关问题。 可能需要进一步解释数学推导过程,比如对方波进行傅里叶变换,积分计算各次谐波的系数,说明偶次项的系数为零的原因。同时,通过图示或代码示例(如Matlab)来展示叠加过程,让用户更直观地理解。 此外,用户的问题可能涉及为什么选择奇次谐波,以及这种叠加在实际信号处理中的应用,比如EMC中的谐波干扰问题,如引用3提到的,高次谐波可能导致辐射超标,这可以作为实际应用的例子。 最后,生成的相关问题需要围绕傅里叶级数展开、谐波叠加的数学证明、吉布斯现象、实际应用等方面,帮助用户深入理解。</think>方波由奇次谐波叠加而成的原理源于傅里叶级数展开。对于周期为$T$的理想方波信号,其数学表达式可通过无限多个奇次倍频的正弦波叠加形成。具体原理如下: ### 1. 傅里叶级数展开 方波作为奇对称周期函数,其傅里叶级数仅包含正弦项且仅保留奇次谐波分量。设基波角频率为$\omega = \frac{2\pi}{T}$,则方波的傅里叶级数表示为: $$ f(t) = \frac{4}{\pi} \sum_{n=1,3,5,...}^{\infty} \frac{1}{n} \sin(n\omega t) $$ 该表达式表明: - **奇次谐波特性**:只有$n=1,3,5,...$等奇数次谐波参与叠加 - **振幅衰减规律**:各次谐波振幅按$\frac{1}{n}$衰减 - **相位一致性**:所有谐波均为同相位正弦波[^1] ### 2. 物理机制分析 **对称性约束**是仅保留奇次谐波的根本原因: - **奇函数对称性**:方波满足$f(-t) = -f(t)$,导致傅里叶系数中的余弦项系数$a_n=0$ - **半波对称性**:满足$f(t+\frac{T}{2}) = -f(t)$,消除所有偶次谐波分量 ### 3. 叠加过程演示 通过逐步叠加谐波可直观观察波形演变(如图1-4): 1. **基波**:$n=1$时,得到标准正弦波 2. **三次谐波叠加**:加入$\frac{1}{3}\sin(3\omega t)$后波形出现平顶趋势 3. **高次谐波效应**:当叠加到$n=100$时,波形接近理想方波,但存在吉布斯现象(过冲震荡)[^2] $$波形收敛公式:\lim_{N\to\infty} \sum_{k=1}^{N} \frac{4}{(2k-1)\pi} \sin((2k-1)\omega t)$$ ### 4. 工程应用验证 实际信号分析中(如引用3的EMC测试案例),480MHz辐射超标可能来源于: - 基频$f_0=96MHz$的5次谐波($5×96=480MHz$) - 或$f_0=160MHz$的3次谐波($3×160=480MHz$) 这验证了奇次谐波理论的实际影响[^3] ### 5. 数学证明概要 通过傅里叶系数计算可得: $$ b_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t)\sin(n\omega t)dt $$ 对于幅值±1的方波,积分结果: $$ b_n = \begin{cases} \frac{4}{n\pi} & n为奇数 \\ 0 & n为偶数 \end{cases} $$ 严格证明仅奇次谐波存在[^4]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值