2020网上的连续性学习(终身学习、持续学习)论文汇总

本文探讨了连续性学习与强化学习的融合,介绍了一种名为多时间尺度回放的方法,旨在提升算法在复杂环境下的学习效率和泛化能力。此外,还讨论了针对终生学习的黑暗体验基线、可搜索扩展单元、批量集合法及不确定性调制等技术,以及Lipschitz约束在终生强化学习中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值