线性代数学习笔记19

这里第二十一课-特征值和特征向量

引言

给定一个矩阵,对某个向量进行操作,使得操作结果和该向量是平行的。即 A x = λ x Ax= \lambda x Ax=λx 我们称 λ \lambda λ为特征值,x 为特征向量。当然对于特征向量,我们是规定不能为0向量的,并且特征向量之间应该线性无关
考虑一些特殊情况

  • 分析,如果令 λ = 0 \lambda=0 λ=0我们有即求 A 的零空间,当然当A 是一个奇异矩阵的时候, λ = 0 \lambda=0 λ=0是一个特征值
  • 当A为投影矩阵的时候,当 x 为投影平面上的向量时,有 λ = 1 \lambda=1 λ=1为其中的一个特征值,当x 垂直与投影平面是,有 λ = 0 \lambda=0 λ=0是其中的一个特征值
  • A = [ 0 1 1 0 ] A = { \left[ \begin{array}{ccc} 0 & 1 \\ 1 & 0 \\ \end{array} \right ]} A=[0110]
    我们可以看出A 是一个置换矩阵,有可以轻易的看出一个特征向量 x = [ 1 1 ] x = { \left[ \begin{array}{ccc} 1 \\ 1\\ \end{array} \right ]} x=[11],对应的特征值为1;另外一个也可以知道为 x = [ 1 − 1 ] x = { \left[ \begin{array}{ccc} 1 \\ -1\\ \end{array} \right ]} x=[11],特征值为-1

特征值和特征向量

A X = λ X AX =\lambda X AX=λX=> A X = λ I X AX =\lambda IX AX=λIX=> A X − λ I X = 0 AX -\lambda IX=0 AXλIX=0=> ( A − λ I ) X (A-\lambda I) X (AλI)X
由于X 不能为 零向量,所以有我们要找到一个合适的 λ \lambda λ使得 ( A − λ I ) (A-\lambda I) (AλI)为一个奇异矩阵,从而求解零向量即可,从而有
=> d e t ( A − λ I ) = 0 det(A-\lambda I)= 0 det(AλI)=0 我们展开行列式,可以知道,这个是一个n次方的方程,有 n 的 λ \lambda λ

  • 我们拿一个矩阵来作为例子
    B = [ 3 1 1 3 ] B = { \left[ \begin{array}{ccc} 3 & 1 \\ 1 & 3 \\ \end{array} \right ]} B=[3113]
    => B = [ 3 − λ 1 1 3 − λ ] B = { \left[ \begin{array}{ccc} 3-\lambda & 1 \\ 1 & 3-\lambda \\ \end{array} \right ]} B=[3λ113λ]
    =>
    ( 3 − λ ) 2 − 1 = 0 (3-\lambda)^2-1=0 (3λ)21=0=> λ 2 − 6 λ + 8 = 0 \lambda^2 -6\lambda +8=0 λ26λ+8=0=> λ 1 = 2 , λ 2 = 4 \lambda_1=2,\lambda_2=4 λ1=2,λ2=4

我们可以观察到特征值的解之和为原矩阵对角线之和,特征值之乘积为原矩阵的行列式

B = [ 3 1 1 3 ] B = { \left[ \begin{array}{ccc} 3 & 1 \\ 1 & 3 \\ \end{array} \right ]} B=[3113]
A = [ 0 1 1 0 ] A = { \left[ \begin{array}{ccc} 0 & 1 \\ 1 & 0 \\ \end{array} \right ]} A=[0110]
的区别是, B = A + 3 I B = A + 3I B=A+3I
A X 1 = λ X 1 , 对 于 I , 有 3 I X 1 = 3 X 1 AX_1 = \lambda X_1 ,对于I,有3IX_1 = 3X_1 AX1=λX1,I,3IX1=3X1
=> ( A + 3 I ) X 1 = ( λ + 3 ) X 1 (A+3I)X_1 = (\lambda+3)X_1 (A+3I)X1=(λ+3)X1
所以我们看出,如果对矩阵加减k 个I,矩阵的特征值会随之加减k,特征向量是不会变的~

  • 特征值某些情况下没有实数解
    如:
    Q = [ 0 − 1 1 0 ] Q = { \left[ \begin{array}{ccc} 0 & -1 \\ 1 & 0 \\ \end{array} \right ]} Q=[0110]
    => ∣ − λ − 1 1 − λ ∣ = λ 2 + 1 \begin{vmatrix} - \lambda& -1 \\ 1 & -\lambda \end{vmatrix} = \lambda ^ 2 + 1 λ11λ=λ2+1
    => λ 1 = i , λ 1 = − i \lambda_1=i,\lambda_1=-i λ1=i,λ1=i

Q 满足 Q T = − Q Q^T = -Q QT=Q我们称之为反对称
如果矩阵是对称的,总是实数特征值解
如果矩阵是反对称的,特征值解为纯序数
普通矩阵介于两者之间

  • 某些情况下,特征向量是缺失的

    [ 3 1 0 3 ] { \left[ \begin{array}{ccc} 3 & 1 \\ 0 & 3 \\ \end{array} \right ]} [3013]该矩阵求解可以得到 λ 1 = λ 1 = 3 , 但 是 只 有 一 个 特 征 向 量 X = [ 1 0 ] \lambda_1=\lambda_1=3,但是只有一个特征向量 X = { \left[ \begin{array}{ccc} 1 \\ 0 \\ \end{array} \right ]} λ1=λ1=3,X=[10]
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值