有序数组的平方
大白话就是把一个有正有负的顺序排列的数组平方后按照顺序再次排列。
双指针法
已知数组平方的最大值肯定出现在数组的两端,双指针法i指向起始位置,j指向终止位置。再定义一个新数组result,和原数组大小一样,让k从后往前移动。
如果A[i] * A[i] < A[j] * A[j]
那么result[k--] = A[j] * A[j];
。
如果A[i] * A[i] >= A[j] * A[j]
那么result[k--] = A[i] * A[i];
。
代码
class Solution
public int[] sortedSquares(int[]nums){
int right=nums.length-1;
int left = 0;
int[]result = new int [nums.length];
int index=result.length-1;
while(left<=right){
if(nums[left]*nums[left]>nums[right]*nums[right]){
result[index--]=num[left]*nums[left];
++left;}
else{
result[index--]=nums[right]*nums[right];
--right;}
}
return result;
}
}
长度最小的子数组
大白话就是有一个n个正整数的数组和一个目标值s,输出满足数组内元素之和>=s的最小连续子数组的长度,如果没有,输出0.
暴力解法:就是确定起点i,终点j移动以得到符合条件的数组
滑动窗口法
根据当前子序列和大小的情况,不断调节子序列的起始位置。
如果当前窗口的值大于s,窗口就缩小一个单位;
窗口的结束位置就是遍历数组的指针,也就是for循环里的索引。
代码
class Solution{
public int minSubArrayLen(int s,int[]nums){
int left=0;
int sum=0;
int result=Integer.MAX.VALUE;
for(int right=0;right<nums.length;right++;){
sum+=nums[right];
while(sum>=s){
result=Math.min(result,right-left-1);
sum-=nums[left++];
}
}
return result ==Integer.MAX_VALUE?0:result;
}
}
思路
定义左边界为0,sum为0,result为最大值,右边界从0开始移动,sum不断求和,当sum大于等于s时,result取原result值和现在子数组的长度的最小值,再把左边界往右移一个单位,不断循环,循环出满足条件的最小数组的长度;最后返回值:如果result还是最开始的最大值,则输出0,如果result有值,则取result值。
螺旋矩阵
给一个正整数n,最后输出一个n阶的正方形数字矩阵。
按照上右下左的顺序填充,可以遵循全都是左闭右开的规律,也可以遵循左开右闭的规律,但是尽量全都遵循一个规律。
代码
class Solution {
public int[][] generateMatrix(int n) {
int loop = 0; // 控制循环次数
int[][] res = new int[n][n];
int start = 0; // 每次循环的开始点(start, start)
int count = 1; // 定义填充数字
int i, j;
while (loop++ < n / 2) { // 判断边界后,loop从1开始
// 模拟上侧从左到右
for (j = start; j < n - loop; j++) {
res[start][j] = count++;
}
// 模拟右侧从上到下
for (i = start; i < n - loop; i++) {
res[i][j] = count++;
}
// 模拟下侧从右到左
for (; j >= loop; j--) {
res[i][j] = count++;
}
// 模拟左侧从下到上
for (; i >= loop; i--) {
res[i][j] = count++;
}
start++;
}
//填充最中间的数
if (n % 2 == 1) {
res[start][start] = count;
}
return res;
}
}