正轴等距离切圆柱投影

讲完了《等面积投影》和《等角投影》,《等距离投影》在y轴的拉伸程度介于前两种投影之间,投影地图的宽高比是2 : 1,介于等面积投影的π : 1与等角投影的1 : 1之间。换句话说,等距离投影在y轴上没有拉伸:任意一小段经线投影后长度不变,但和其他正轴切圆柱投影一样,x轴拉伸了sec(Φ)倍,所以说,等距投影后的球面图形既不等面积也不等形状,图形的拉伸情况如下:

f27e6d9e8c450d0e8a8911f552f82707.png

可以看出,图中每个圆的高度一致,宽度随纬度增大而增大:水平方向被拉伸了。虽然高纬度地区形状扭曲,但是等距投影是四大圆柱投影中最简单的一种,它甚至没有投影公式,因为公式就是:x=λ、y=Φ(令半径R=1),就是把经纬度的字面量作为长方形地图上的横坐标和纵坐标,而我们知道,经度的范围是-180°~180°,纬度的范围是-90°~90°,所以长方形的宽高比是2 : 1。想象一下:赤道不动,将地球的每一根经线给捋直了,然后再连接经线上均匀分布的那些纬度线,就成了上图中的网格线。在四大圆柱投影中,只有等距投影和等积投影能覆盖全球,因此像天空球和全景摄像只能选择这2种投影方法,在民用软件中,由于不需要太高的精度,很多事情是怎么简单怎么来,比如正球体比椭球体简单,于是WebGIS都采用WebMercator来等角投影,由于等距投影比等积投影简单,于是三维可视化都采用等距圆柱投影图片作为天空球的实现,比如下图:

154634b769313a33d062c858314a5f77.png

由于其简单的特性,等距投影也叫做简易投影,早在2000年前就被人投入使用了,是四大圆柱投影中最早诞生的。之所以叫‘等距’,是因为投影后的纬线之间距离相等,这一点区别于其他3种圆柱投影,故得此名。

正轴等距离圆柱投影又称“方块投影”、“方格投影”,圆柱投影中的一种。设圆柱投影面与赤道相切,按经线长度不变条件将经纬线网投影到圆柱面上,再沿一母线剖开展平。这种投影图上,纬线是一组等距平行直线,纬线间隔与实地等长;经线是与纬线垂直的等距平行直线,经线间隔在赤道上与实地相等,离赤道越远越放长;经线与纬线构成方格形(矩形)网格。沿经线方向无长度变形,其面积与角度的变形线与纬线平行,变形值由赤道向高纬度增大。适用于沿赤道或低纬度东西延伸地带的地图。

百科

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xosg

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值