INDUCTIVE MATRIX COMPLETION BASED ON GRAPH NEURAL NETWORKS
摘要:在本文中,我们提出了一个基于归纳图的矩阵补全(IGMC)模型来解决这个问题。IGMC纯粹基于评价矩阵生成的(用户、物品)对周围的1跳子图来训练图神经网络(GNN),并将这些子图映射到相应的评价。它以最先进的传感器基线实现高度竞争性能。此外,IGMC是归纳性的,它可以泛化到在培训期间看不到的用户/项目(假设它们的交互存在),甚至可以转移到新的任务。我们的迁移学习实验表明,从MovieLens数据集训练出来的模型可以直接用于预测豆瓣电影的评分,并具有令人惊讶的良好性能。我们的工作表明:1)可以在不使用边信息的情况下训练归纳矩阵补全模型,同时获得与最先进的传导方法相似或更好的性能;2)围绕(用户,物品)对的局部图形模式是该用户对物品评级的有效预测器;和3)远程依赖性可能不是建模推荐系统所必需的。
框架
文中有趣地方:将矩阵缺失值的问题转化为图上的问题,然后利用GNN方法进行补全。