Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting(NIPS2020)

Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting(NIPS2020)

背景:希望结合GFT和DFT的优点,完全在光谱领域对多元时间序列数据进行建模。首先应用GFT将结构多变量输入转换为光谱时间序列表示,而不同的趋势可以分解为正交的时间序列。利用DFT将每个单变量时间序列转移到频域。经过GFT和DFT之后,光谱表示变得更容易被卷积和序列建模层识别。此外,在端到端框架中加入了一个潜在相关层来自动学习序列间的相关性,因此它不需要多元相关性作为先验

5 Experiments

"双任务交互式学习对于遥感图像时空谱融合的无监督方法"是一种利用深度学习技术处理遥感数据的高级策略。这种代码通常涉及卷积神经网络(CNN)的联合训练,其中包含两个任务:一是对时空特征的学习,另一个是对光谱特征的分析。它通过让模型同时处理空间、时间序列和光谱信息来增强特征融合。 这类代码的核心通常包括以下几个步骤: 1. 数据预处理:加载并标准化遥感数据集,可能需要分割成时空片段。 2. 模型架构:设计一个包含空间流、时间流和光谱流的模块,比如U-Net、LSTM或其他适合处理时空序列的结构。 3. 双任务损失函数:定义一个综合考虑两个任务的损失函数,如交叉熵加权的总和。 4. 交互学习:通过梯度更新相互影响,空间流可以指导光谱流理解更丰富的上下文,反之亦然。 5. 无监督学习:因为没有标注数据,可能会使用自监督策略,如预测下一个时间步、重构输入等。 具体的Python代码库如PyTorch、TensorFlow或Keras中可能的样子会像这样: ```python import torch.nn as nn from unet import UNet #假设这是自定义的空间+光谱融合Unet class DSTSF(nn.Module): def __init__(self): super(DSTSF, self).__init__() self.spatial_unet = UNet(spatial_input_channels=... #空间通道数 self.temporal_lstm = LSTM( ... #定义时间序列部分 # 光谱分支可以类似地定义 def forward(self, x_spatiotemporal): spatial_out = self.spatial_unet(x_spatiotemporal[:, :, :, :]) temporal_out = self.temporal_lstm(x_spatiotemporal[:, :, :, -1]) #只取最后一维作为时间序列输入 # 进行融合操作(例如concatenation) fused_output = torch.cat([spatial_out, temporal_out], dim=-1) return fused_output # 使用交叉熵等损失函数 + 学习率衰减策略 optimizer = torch.optim.Adam(model.parameters(), lr=0.001) loss_fn = nn.CrossEntropyLoss() for epoch in range(num_epochs): # 训练循环 outputs = model(inputs) loss = loss_fn(outputs, targets) # 假设targets是无标签的目标输出 optimizer.zero_grad() loss.backward() optimizer.step() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值