Time Series Classification by Sequence Learning in All-Subsequence Space

现有的时间序列分类方法可以分为基于形状(数字)和基于结构(符号)。基于形状的技术使用原始数值时间序列与欧几里得或动态时间扭曲距离和1最近邻分类器。他们是准确的,但计算密集。基于结构的方法将原始数据离散化为符号表示,然后为分类器提取特征。最近的符号方法在准确性和效率方面都超过了数字方法。大多数方法都使用了一组符号单词表示,但通常单词长度在所有时间序列中都是固定的,这是文献中发现的一个主要缺点。此外,之前也没有人尝试使用有效的序列学习技术来超越单个单词,以基于可变长度的单词或符号序列的特征。我们研究了一种有效的线性分类方法SEQL,它最初是为符号序列分类而设计的。SEQL利用贪婪梯度下降法利用全子序列空间从训练数据中学习判别子序列。我们探索了不同的离散化方法,从完全没有到增加对原始数据的平滑,并研究了这些转换对SEQL分类器准确性的影响。本文提出了SEQL对时间序列数据的两种适应方法:SAX-VSEQL通过学习变长符号词来处理x轴偏移量,SAX-VFSEQL通过学习模糊变长符号词来处理x轴和y轴偏移量.我们的模型是丰富特征空间中的线性分类器。它们的预测是基于训练过程中学习到的最具鉴别性的子序列,并且可以用于解释分类决策。

背景:方法的缺点是SAX-word长度在所有时间序列上都是固定的,这可能会降低这种表示的能力。这种方法的另一个缺点是,它需要对参数进行密集优化,以便在训练期间选择最佳SAX转换。

Our contribution

我们提出了一种基于结构的时间序列分类新方法。SEQL是一种高效的序列分类器,用于处理具有大字母[10],[11]的非常长的离散序列。SEQL利用贪婪梯度下降法利用全子序列空间从训练数据中学习最佳的判别子序列1。我们探索了不同的离散化方法,从完全没有(原始数据)到增加对原始数据的平滑和压缩,并研究这些转换对SEQL分类器训练和测试的准确性和效率的影响。

SAX-VSEQL 可以通过学习可变长度的符号单词来处理x轴偏移,因此解决了之前关于固定跨所有时间序列的SAXword长度的工作中的一个主要弱点

SAX-VFSEQL  可以通过学习模糊的可变长度符号词来处理x轴和y轴偏移,并消除调优SAX参数的需要,这是一项计算成本很高的任务,并且被认为是需要通过之前的工作进行改进的领域

CLASSIFICATION WITH SEQUENCE LEARNER

1)Sequence Learner

SEQL使用坐标梯度下降方法[10],[11]利用全子序列空间从训练数据中学习判别子序列。其关键思想是利用子序列空间的结构,以有效地优化分类损失函数,如Logistic回归的二项式对数似然损失或支持向量机的平方铰损失。

在训练阶段,SEQL以具有相应标签的离散时间序列作为输入,为每个类生成一个线性分类器(即加权子序列列表)。在分类阶段,将分类器应用于新的(离散化的)测试时间序列,产生分类分数。

 

 Adaptations of SEQL for Time Series Classification 

        SAX-SEQL: SEQL with SAX representations. 

       SAX-VSEQL: Learning variable-length SAX-words.

      SAX-VFSEQL: Learning fuzzy variable-length SAXwords.

论文主要是在子序列空间中为分类器学习一个表示。类似于KDD2014 的shapelet方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值