Long-term Spatio-Temporal Forecasting via Dynamic Multiple-Graph Attention

该研究针对长期时空预测(LSTF)的挑战,提出了一种新的图神经网络框架。该框架包括图构建、动态多图融合和时空图神经网络三个组件。通过构建距离图、邻居图和功能图来捕获上下文信息,使用动态多图融合模块结合空间和图注意机制描述节点间相关性,并通过可训练的权值张量表示节点重要性。实验表明,这种方法在LSTF任务中显著提升了预测性能。

许多现实世界中无处不在的应用,如停车建议和空气污染监测,都从精确的长期时空预测(LSTF)中获益良多。LSTF利用了空间和时间域、上下文信息和数据中的固有模式之间的长期依赖关系。近年来的研究表明,多图神经网络(MGNNs)具有提高预测性能的潜力。然而,现有的MGNN方法普遍存在通用性不强、对上下文信息利用不足、图融合方法不平衡等问题,无法直接应用于LSTF。为了解决这些问题,我们构建了新的图模型来表示每个节点的上下文信息和长期的时空数据依赖结构。为了融合多图信息,我们提出了一种新的动态多图融合模块,通过空间注意和图注意机制来描述图内节点和跨图节点之间的相关性。此外,我们引入一个可训练的权值张量来表示不同图中每个节点的重要性。在两个大型数据集上的大量实验表明,我们提出的方法显著提高了现有图神经网络模型在LSTF预测任务中的性能。

背景:

LSTF的一个主要挑战是有效地捕获长期的时空依赖性和提取上下文信息

 the proposed framework consists of three major components: the graph construction module, the
dynamic multi-graph fusion module, and the spatio-temporal graph neural network (ST-GNN).

 

Graph Construction

    Distance Graph
    Neighbor Graph  Functionality Graph
 

。。。。。。。。。。

Dynamic Multi-graph Fusion

本文提出了一种动态图融合方法;该方法的整个过程如图2和算法1所示。我们构造了一个可训练的权值张量作为动态多图注意块(DMGAB)的输入。此外,我们将空间信息和图信息融合到多图空间嵌入(MGSE)中。将此嵌入加入DMGAB。为了便于剩余连接,DMGAB各层产生D维的输出,块可以表示为DMGAB

Multi-graph Spatial Embedding

为了表示不同图中节点之间的关系,我们进一步提出了图嵌入来编码5个图

 

Dynamic Multi-graph Attention Block
图中的任何节点都会受到其他具有不同级别的节点的影响。当作用于多个图表时,这些影响会被放大。为了对内部节点的相关性进行建模,我们设计了一个多图注意块来自适应地捕获节点之间的相关性。 

Spatial Attention
我们通过提出一种空间注意机制来捕捉节点的上下文相关性。与之前的空间注意机制作用于批处理时间数据的隐藏状态不同,我们的方法作用于权值张量的隐藏状态。

 

 

Graph Attention
我们利用图注意来获得不同图中一个节点的自相关 

 

 Gated Fusion

 

 

 

 

### MATLAB 实现时空图卷积网络用于交通流量预测 为了实现《Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting》中的方法,需要构建一个能够处理时空数据的框架。该框架主要由以下几个部分组成: #### 1. 数据预处理 在开始之前,需准备并清理交通流量数据集。这通常涉及缺失值填充、标准化以及创建邻接矩阵。 ```matlab % 假设 data 是 N x T 的矩阵, 其中 N 表示节点数, T 表示时间步长. data = load('traffic_data.mat'); % 加载交通流量数据 adj_matrix = create_adjacency_matrix(data); % 创建邻接矩阵函数 normalized_data = normalize_traffic_data(data); % 归一化交通流量数据 ``` #### 2. 构建图结构 通过定义道路之间的连接关系来建立图结构。这里使用邻接矩阵表示图的关系。 ```matlab function adj_matrix = create_adjacency_matrix(road_network) % road_network 应包含路段间距离或其他衡量标准的信息 distances = calculate_distances_between_roads(road_network); threshold = determine_threshold(distances); % 设定阈值 [N, ~] = size(distances); adj_matrix = zeros(N); for i = 1:N for j = 1:N if distances(i,j) <= threshold && i ~= j adj_matrix(i,j) = exp(-distances(i,j)^2 / (2*threshold^2)); end end end end ``` #### 3. 定义 ST-GCN 层 ST-GCN 结合了空间上的 GCN 和时间维度上的 CNN 来捕捉复杂的时空模式[^3]. ```matlab classdef STGCNLayer < nnet.layer.Layer properties K; % 支持的最大阶数 F_in; F_out; W; b; end methods function layer = STGCNLayer(K,F_in,F_out) layer.K = K; layer.F_in = F_in; layer.F_out = F_out; szW = [F_out,K+1,F_in]; layer.W = randn(szW)*0.01; layer.b = zeros(F_out,1); end function Z = predict(layer,X,A_hat) % X: 输入特征向量 (B,N,T,F_in), B 批次大小, N 节点数量, T 时间长度, F_in 特征维数 % A_hat: 预处理后的拉普拉斯矩阵 B = size(X,1); N = size(A_hat,1); T = size(X,3); H = cell(T,1); for t=1:T Xt = reshape(X(:,:,t,:),[],size(X,4)); % 将三维张量转换成二维矩阵 HT = []; for k=0:min(layer.K,size(A_hat,1)-1) AkX = power(A_hat,k)*Xt; HT = cat(2,HT,AkX); end H{t} = tanh(reshape(linear_combination(HT,layer.W)+repmat(layer.b',size(B*N,1),1),... [B,N,layer.F_out])); end Z = cat(3,H{:}); end function dLdW = backward(layer,dLdZ,X,A_hat) ... end end end ``` #### 4. 训练模型 设置超参数,并利用反向传播算法调整权重以最小化损失函数。 ```matlab num_epochs = 50; batch_size = 64; layers = [ imageInputLayer([input_height input_width channels]) convolution2dLayer(filterSize,numFilters,'Padding','same') batchNormalizationLayer() reluLayer() fullyConnectedLayer(outputSize) regressionLayer()]; options = trainingOptions('adam',... 'MaxEpochs', num_epochs,... 'MiniBatchSize', batch_size,... 'InitialLearnRate', 0.001,... 'Shuffle', 'every-epoch',... 'Verbose', false,... 'Plots', 'training-progress'); model = trainNetwork(trainingData,layers,options); ``` 请注意上述代码片段仅为概念验证性质,在实际应用时还需要考虑更多细节优化及调试工作。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值