A Model-Agnostic Approach for Learning with Noisy Labels of Arbitrary Distributions

大多数现实世界的数据集都包含标签噪声,这会对在其上训练的下游机器学习模型产生负面影响。为了解决这个问题,可以在训练前对错误标记的数据进行清洗,这不仅耗时且昂贵,而且需要领域专业知识。另一种方法是使用抗噪声机器学习训练算法。然而,现有方法具有一些先决条件,在许多应用中可能不实用(例如,它们与特定的下游模型架构相关联,或适用于特定的噪声分布)。本文提出一种与模型无关的方法,用于学习任意分布的噪声标签。该方法可以与任何基于梯度下降优化的机器学习模型一起工作,并处理任何标签噪声分布通过提出两个理论上接地的噪声鲁棒损失函数(针对不同的噪声分布)来实现这些目标,能够基于一个新的噪声设置检测模块自动决定使用哪个损失函数。通过元学习技术直接学习损失函数中所需的超参数,以最小化给定的小干净验证集上的损失,并提出了几种策略来提高训练效率。在具有真实世界噪声和注入标签噪声的多个数据集上的实验表明,所提出方法的性能优于最先进的方法。

阅读者总结:这篇论文涉及到训练数据中存在噪声问题,这个一个很有趣的研究内容。文中很清晰的将整个划分为依赖类和依赖特征,两个方面进行问题分解,然后分别使用梯度优化方法找到使得loss最小的超参数。

图1显示了其中两个在现实中更可能发生的情况。这里,不同颜色的点表示不同标签的数据,图1(a)表示无噪声标签的状态。图1(b)中的标签噪声是类相关的,其中出现了标签错误取决于真实的类别标签。因此,我们可以观察到紫色的点作为噪声数据均匀分布在橙色区域。在这种情况下,一个噪声转移矩阵就足以证明不同标签错误的概率。相比之下,图1(c)中的标签噪声是依赖于特征的,其中标签错误的发生取决于特征和真实标签。我们可以观察到,紫色的点作为噪声数据位于橙色区域的边界附近(图1(c1))或集中在内部特定区域(图1(c-2)),每个样本都有自己的噪声过渡向量。

方法:

我们的建议。本文提出一种与模型无关的方法,用于学习任意分布的噪声标签。本文建议使用两个噪声鲁棒损失函数Jc和Jf,并证明了所提出的损失函数是无偏的(即,在噪声数据上的Jc或Jf的最小化等价于在干净数据上的传统损失J的最小化)。Jc适用于类依赖的噪声设置,其中标签错误的概率仅取决于真实的类别,标签噪声分布可以通过噪声转移矩阵t进行建模。Jf主要适用于特征依赖的噪声设置,其中标签错误的概率也取决于示例的特征(因此可以对任意标签噪声分布进行建模)。在这种情况下,我们为每个训练示例创建过渡向量,以执行其自身的损失校正

 

 

 框架:

 

 

 也就是:先判断到底是那种类型的依赖,类依赖还是特征依赖

 

 

 IV. NAR NOISE SETTING

我们首先研究了更简单的情况,标签错误的概率只取决于类别,在这种情况下,标签噪声可以简单地通过转移矩阵建模。在第IV-A节中,我们介绍了NAR噪声环境的鲁棒损失函数

 

上述损失函数的有效性高度依赖于噪声转移矩阵T的估计,本文将T视为超参数。单纯地调优超参数T需要对模型进行多次训练

V. NNAR NOISE SETTING

在现实中,更实际的做法是假设标签噪声的概率不仅取决于真类,还取决于特征。 

 

 

 

 

 

 。。。。。。。。。。。。

。。。。。。。。。。。。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值