Transformer讲解(一)- NLP变形金刚-详细知识介绍

Transformer从零详细解读(可能是你见过最通俗易懂的讲解)_哔哩哔哩_bilibili

视频123

1

 2 Encoder 多个循环,结构相同,参数不同(非共享参数)(特别案例albert是参数共享)

3.1 原论文图 xN (原论文6个encoders)

3.2 Encoder和Decoder区别
 Decoder中多了
a 多一个交互层
b Masked(被掩码的多头注意力)

 4 Encoder细节

 

 5 输入部分分为:Enbedding位置编码

5.1 Enbedding
a 使用word to vec映射(每一个字'我'对应512维度向量)
b 也可以使用随机初始化(数据量很大)

5.2 位置编码

 由RNN引入为什么位置编码:
U输入参数,W隐藏参数, V输出参数(这是一套参数,所有time steps的共享一套参数)
看右图是一套参数都是U,W,V他们是相同的。
RNN的梯度消失有什么不同?
RNN是总的梯度和,因此容易被近距离梯度主导,远距离梯度忽略(面试题)

Transformer是并行处理,而不是先处理“我”然后“爱”最后“你”,因此需要对位置进行编码。

“爱 ”的向量为512维度,奇数偶数分别对应cos,sin(看下图)

 

 将位置编码512维度字向量512维度相加,得到新的512,作为输入。

 公式(3)第一个公式:
假如:pos+k代表你,pos代表我,k代表爱
也就是说,可以被pos我,k爱两个线性组合起来,也就是说绝对位置向量中蕴含了相对位置向量信息。(这些会在注意力机制中消失)

6 注意力机制

 人:给了 “婴儿在干嘛”这句话之后 ,人会分析这句话与图中哪部分更加关联 ?

公式:

三个矩阵Q, K, V

Q分别和k1,k2,k3,k4相乘(点成),数值越大表示越关注,越相似,距离越相近(婴儿分别和不同区域对比)

QK再与V矩阵相乘,得到加权和

1 点乘法 ->s
2 softmax ->得到相似度 a
3 乘V
4 相加
得到注意力值

Transfermor中的注意力,如何获取QKV

1 矩阵参数的使用W

4维度向量x1,x1

利用同一套矩阵参数WQ,
x1*WQ = q1
x2*WQ = q2
x3*WQ = q3

同理
x1*WK = k1
x2*WK = k2
x3*WK = k3

x1*WV = v1
x2*WV = v2
x3*WV = v3

2 计算注意力值

 qk得到数值需要除8(根号k)
因为QK相乘数值很大得话,softmax的梯度很小,会梯度消失。

=在线激情讲解transformer&Attention注意力机制(上)_哔哩哔哩_bilibili=

====================》生动形象的模型介绍《========================

自注意力原理

 

 

 

 

====================》生动形象的模型介绍《========================

 为何会得到0.88, 0.12??

3 实际操作中会使用矩阵,来方便并行,多个一起输入(x1, x2)

4 多头注意力

 每个方框是一个空间,可以不同子空间合作

 视频4

1 残差和layerNorm

 

 X Z对位相加(残差)

残差原理

 

 

 对A的输出作链式求导

连乘会有梯度消失,因为有1 所以不会梯度消失

 

 视频56 有时间再补充,这都是经验

视频7 解码器

1 masked掩盖的   2 用于交互

1 mask

mask作用:当前单词之后的单词都抹掉不让看到

如果不抹掉,you会得到所有信息,
比如预测YOU,训练的时候能看到所有所有信息,而在测试阶段看不到


mask掉之后训练和测试都是相符的,有一致性

2 交互

没有mask

 编码器的输出要和每一个解码器进行交互

具体交互如下:

Decoder生成Q矩阵
Encoder生成KV

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
Transformer模型中的self-attention机制是其核心组成部分之一。self-attention机制可以使模型更好地理解输入序列中的上下文关系,从而提高模型的性能。 self-attention机制的主要思想是将输入序列中的每个元素都看作是查询(key)、键(key)和值(value)三个向量的线性组合,然后计算每个查询向量与所有键向量的相似度,并将相似度作为权重计算出每个键向量对应的值向量的加权和,最终得到一个加权和向量。这个加权和向量就是输入序列中每个元素的表示。 具体来说,self-attention机制可以分为三个步骤: 1. 计算相似度 通过计算查询向量和键向量之间的点积得到相似度矩阵,然后对相似度矩阵进行缩放,从而避免梯度消失问题。 2. 计算权重 通过将相似度矩阵进行softmax操作,得到每个键向量对应的权重,这个权重代表了查询向量与该键向量的相似度。 3. 计算加权和 将每个值向量乘以对应的权重,然后将它们加起来,得到最终的加权和向量。 在Transformer模型中,self-attention机制被应用于多头注意力机制中,通过将输入序列划分为多个子序列,每个子序列都使用单独的self-attention机制进行编码,然后将所有子序列的编码结果拼接起来,得到最终的编码结果。 总之,self-attention机制通过计算输入序列中每个元素之间的关系,从而获得更好的上下文表示,进而提高模型的性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

计算机视觉-Archer

图像分割没有团队的同学可加群

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值