数学分析(十二)-数项级数1-级数的敛散性2:级数收敛的柯西准则【①、若级数收敛⇒其一般项收敛于0,即lim_{n→∞}uₙ=0;②一般项收敛于0⇏级数收敛】【级数与其部分和数列具有相同的敛散性】

本文详细介绍了数项级数的收敛性,特别是柯西准则的应用。通过几何级数、调和级数等实例,阐述了级数收敛与发散的条件。还探讨了级数加括号后的收敛性,并给出级数变换对其敛散性的影响。
摘要由CSDN通过智能技术生成

u 1 + u 2 + ⋯ + u n + ⋯ ( 1 ) u_{1}+u_{2}+\cdots+u_{n}+\cdots\quad\quad (1) u1+u2++un+(1)

称为常数项无穷级数数项级数 (也常简称级数), 其中 u n u_{n} un 称为数项级数(1) 的通项一般项.

S n = ∑ k = 1 n u k = u 1 + u 2 + ⋯ + u n , ( 2 ) S_{n}=\sum_{k=1}^{n} u_{k}=u_{1}+u_{2}+\cdots+u_{n}, \quad\quad(2) Sn=k=1nuk=u1+u2++un,(2)

称它为数项级数 (1) 的 n n n 个部分和,也简称部分和.

定义 2

若数项级数 (1) 的部分和数列 { S n } \left\{S_{n}\right\} { Sn} 收敛于 S S S (即 lim ⁡ n → ∞ S n = S \lim \limits_{n \rightarrow \infty} S_{n}=S nlimSn=S ), 则:

  • 称数项级数 (1) 收敛,
  • S S S 为数项级数 (1) 的, 记作
    S = u 1 + u 2 + ⋯ + u n + ⋯  或  S = ∑ u n . S=u_{1}+u_{2}+\cdots+u_{n}+\cdots \text { 或 } S=\sum u_{n} . S=u1+u2++un+  S=un.

{ S n } \left\{S_{n}\right\} { Sn} 是发散数列, 则称数项级数 (1) 发散.

例 1
讨论等比级数 (也称为几何级数)

a + a q + a q 2 + ⋯ + a q n + ⋯ ( 3 ) a+a q+a q^{2}+\cdots+a q^{n}+\cdots \quad\quad(3) a+aq+aq2++aqn+(3)

的敛散性 ( a ≠ 0 ) (a \neq 0) (a=0).


q ≠ 1 q \neq 1 q=1 时, 级数 (3) 的第 n n n 个部分和

S n = a + a q + ⋯ + a q n − 1 = a ⋅ 1 − q n 1 − q . S_{n}=a+a q+\cdots+a q^{n-1}=a \cdot \frac{1-q^{n}}{1-q} . Sn=a+aq++aqn1=a1q1qn.

因此,

  • (i) 当 ∣ q ∣ < 1 |q|<1 q<1 时, lim ⁡ n → ∞ S n = lim ⁡ n → ∞ a ⋅ 1 − q n 1 − q = a 1 − q \lim \limits_{n \rightarrow \infty} S_{n}=\lim \limits_{n \rightarrow \infty} a \cdot \frac{1-q^{n}}{1-q}=\frac{a}{1-q} nlimSn=nlima1q1qn=1qa. 此时级数 (3) 收敛, 其和为 a 1 − q \frac{a}{1-q} 1qa.
  • (ii) 当 ∣ q ∣ > 1 |q|>1 q>1 时, lim ⁡ n S n = ∞ \lim \limits_{n} S_{n}=\infty nlimSn=, 级数 (3) 发散.
  • (iii) 当 q = 1 q=1 q=1 时, S n = n a S_{n}=n a Sn=na, 级数发散.

q = − 1 q=-1 q=1 时, S 2 k = 0 , S 2 k + 1 = a , k = 0 , 1 , 2 , ⋯ S_{2 k}=0, S_{2 k+1}=a, k=0,1,2, \cdots S2k=0,S2k+1=a,k=0,1,2,, 级数发散.

总之, ∣ q ∣ < 1 |q|<1 q<1 时, 级数 (3) 收敛; ∣ q ∣ ⩾ 1 |q| \geqslant 1 q1 时, 级数 (3) 发散.

例 2
讨论数项级数

1 1 ⋅ 2 + 1 2 ⋅ 3 + ⋯ + 1 n ( n + 1 ) + ⋯ ( 4 ) \frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{n(n+1)}+\cdots \quad\quad(4) 121+231++n(n+1)1+(4)

的敛散性.


级数 (4) 的第 n n n 个部分和

S n = 1 1 ⋅ 2 + 1 2 ⋅ 3 + ⋯ + 1 n ( n + 1 ) = ( 1 − 1 2 ) + ( 1 2 − 1 3 ) + ⋯ + ( 1 n − 1 n + 1 ) = 1 − 1 n + 1 . \begin{aligned} S_{n} & =\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{n(n+1)} \\ & =\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\cdots+\left(\frac{1}{n}-\frac{1}{n+1}\right) \\ & =1-\frac{1}{n+1} . \end{aligned} Sn=121+231++

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值