定理 12.2
若级数 ∑ u n \sum u_{n} ∑un 与 ∑ v n \sum v_{n} ∑vn 都收敛, 则对任意常数 c , d c, d c,d, 级数 ∑ ( c u n + d v n ) \sum\left(c u_{n}+d v_{n}\right) ∑(cun+dvn) 亦收敛,且
∑ ( c u n + d v n ) = c ∑ u n + d ∑ v n . \sum\left(c u_{n}+d v_{n}\right)=c \sum u_{n}+d \sum v_{n} . ∑(cun+dvn)=c∑un+d∑vn.
由定理 12.2 知道, 若 ∑ u n \sum u_{n} ∑un 为收敛级数, a a a 为常数, 则
a ∑ u n = ∑ a u n , a \sum u_{n}=\sum a u_{n}, a∑un=∑aun,
由此立刻可以推广到收敛级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty} u_{n} ∑n=1∞un 与有限项和的乘积,即
( a 1 + a 2 + ⋯ + a m ) ∑ n = 1 ∞ u n = ∑ n = 1 ∞ ∑ k = 1 ∞ a k u n , \left(a_{1}+a_{2}+\cdots+a_{m}\right) \sum_{n=1}^{\infty} u_{n}=\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} a_{k} u_{n}, (a1+a2+⋯+am)n=1∑∞un=n=1∑∞k=1∑∞akun,
现在讨论在什么条件下能把它推广到无穷级数之间的乘积上去.
设有收敛级数
∑ u n = u 1 + u 2 + ⋯ + u n + ⋯ = A , ( 11 ) ∑ v n = v 1 + v 2 + ⋯ + v n + ⋯ = B . ( 12 ) \begin{array}{l} \sum u_{n}=u_{1}+u_{2}+\cdots+u_{n}+\cdots=A, \quad\quad(11)\\ \sum v_{n}=v_{1}+v_{2}+\cdots+v_{n}+\cdots=B . \quad\quad(12) \end{array} ∑un=u1+u2+⋯+un+⋯=A,(11)∑vn