数学分析(十二)-数项级数3-一般项级数2-绝对收敛级数3:级数的乘积【柯西定理:若级数Σuₙ(=A)、Σvₙ(=B)都绝对收敛,则Σuₙ•Σvₙ也绝对收敛,级数和为A•B】

该博客介绍了数学分析中关于级数乘积的定理,特别是柯西定理。如果两个级数绝对收敛,那么它们的乘积也绝对收敛,其和等于两级数和的乘积。内容包括级数的加法性质、柯西定理的证明及其应用举例,如等比级数的乘积。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定理 12.2

若级数 ∑ u n \sum u_{n} un ∑ v n \sum v_{n} vn 都收敛, 则对任意常数 c , d c, d c,d, 级数 ∑ ( c u n + d v n ) \sum\left(c u_{n}+d v_{n}\right) (cun+dvn) 亦收敛,且

∑ ( c u n + d v n ) = c ∑ u n + d ∑ v n . \sum\left(c u_{n}+d v_{n}\right)=c \sum u_{n}+d \sum v_{n} . (cun+dvn)=cun+dvn.


由定理 12.2 知道, 若 ∑ u n \sum u_{n} un 为收敛级数, a a a 为常数, 则

a ∑ u n = ∑ a u n , a \sum u_{n}=\sum a u_{n}, aun=aun,

由此立刻可以推广到收敛级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty} u_{n} n=1un 与有限项和的乘积,即

( a 1 + a 2 + ⋯ + a m ) ∑ n = 1 ∞ u n = ∑ n = 1 ∞ ∑ k = 1 ∞ a k u n , \left(a_{1}+a_{2}+\cdots+a_{m}\right) \sum_{n=1}^{\infty} u_{n}=\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} a_{k} u_{n}, (a1+a2++am)n=1un=n=1k=1akun,

现在讨论在什么条件下能把它推广到无穷级数之间的乘积上去.


设有收敛级数

∑ u n = u 1 + u 2 + ⋯ + u n + ⋯ = A , ( 11 ) ∑ v n = v 1 + v 2 + ⋯ + v n + ⋯ = B . ( 12 ) \begin{array}{l} \sum u_{n}=u_{1}+u_{2}+\cdots+u_{n}+\cdots=A, \quad\quad(11)\\ \sum v_{n}=v_{1}+v_{2}+\cdots+v_{n}+\cdots=B . \quad\quad(12) \end{array} un=u1+u2++un+=A,(11)vn

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值