PyTorch笔记14--权值初始化

本文探讨了梯度消失和爆炸问题在深度学习中的影响,重点介绍了Xavier方法(包括均匀分布和正态分布)和Kaiming方法(针对ReLU等非饱和激活函数),以及nn.init.calculate_gain函数在选择适当初始化方法中的作用。文中列举了10种常见的初始化策略。
摘要由CSDN通过智能技术生成

梯度消失与爆炸

Xavier方法与Kaiming方法

Xavier初始化

方差一致性:保持数据尺度维持在恰当范围,通常方差为1
激活函数:饱和函数,如Sigmoid,Tanh

Kaiming初始化

方差一致性:保持数据尺度维持在恰当范围,通常方差为1
激活函数:ReLU及其变种

常用初始化方法

nn.init.calculate_gain

主要功能:计算激活函数的方差变化尺度

nn.init.calculate_gain(
    nonlinearity,#激活函数名称
    param=None#激活函数的参数,如Leaky ReLU的negative_slop
)

十种初始化方法

1. Xavie r均匀分布

2. Xavie r正态分布

3. Kaiming均匀分布

4. Kaiming正态分布

5. 均匀分布

6. 正态分布

7. 常数分布

8. 正交矩阵初始化

9. 单位矩阵初始化

10. 稀疏矩阵初始化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值