spss 回归分析

目录

简单线性回归

1.根据预测目标,确定自变量和因变量

2.绘制散点图确定相关性

 

3.估计模型参数,建立线性回归模型

4.对回归模型进行检验

5.利用回归模型进行预测

多重线性回归

1.根据预测目标确定自变量因变量

2.绘制散点图,确定回归模型

3.估计模型参数,建立线性回归模型

4.模型检测

5.利用回归模型进行预测


简单线性回归

一个自变量

1.根据预测目标,确定自变量和因变量

‘广告费用’作为自变量,‘销售额’作为因变量,评估广告对销售额的具体影响

 

2.绘制散点图确定相关性

相关系数为0.816,为高度正向相关关系

 

3.估计模型参数,建立线性回归模型

【分析】【回归】【线性】,变量移至对应的因变量自变量

【统计】,勾选【回归系数框】,作用是估计出回归系数;勾选【模型拟合】,作用是输出判定系数 R²

【选项】勾选【在方程中包括常量】,作用是拟合出直线的截距 a

【确定】输出四张表

 

4.对回归模型进行检验

 

第二列为相关系数 r 为 0.816,高度正相关,与前面分析结果一致;第三列 R 方位判定系数,用于表示拟合得到的模型能解释因变量变化的百分比,越接近 1,表示模型效果越好;第四列修正因自变量的个数的增加而导致模型拟合效果过高的情况,用于衡量多重线性回归;最后一列,其大小反应了建立的模型预测因变量时的精度,越小,说明模型拟合效果越好

 

线性回归方差分析表,,主要作用是通过 F 检验来判断回归模型的回归效果,即检验因变量与所有自变量之间的线性关系是否显著,用线性模型来描述他们之间的关系型是否恰当

平方和(SS),自由度(df),均方(MS),F(F统计量),显著性(P值),一般只需关注 F 和 P,

0.01 < p <= 0.05 ,具有统计学意义,p <= 0.01 具有极其显著的统计学意义

 

第一列为回归模型的常量与自变量 x

第二列的 B 为常量 a(截距),回归系数 b(斜率),回归模型 y = 377 + 14.475x

 

5.利用回归模型进行预测

预测数据较多时,可以在【线性回归】对话框中,单击【保存】按钮,勾选【未标转化】,新增了一列‘PRE_1’的预测变量

 

 

 

多重线性回归

1.根据预测目标确定自变量因变量

‘广告费用’‘客流量’作为自变量,‘销售额’因变量

 

2.绘制散点图,确定回归模型

【矩阵散点图】

 

3.估计模型参数,建立线性回归模型

【分析】【回归】【线性】,‘客流量’放入自变量,5中自变量步进方法

【输入】:强制将所选择的自变量纳入回归模型中

【步进】:将自变量逐个引入模型并进行统计显著性检验,直至再也没有不显著的自变量从回归模型中剔除为止

【除去】:根据设定条件,直接剔除一部分自变量

【后退】:根据设定条件,每次剔除一个自变量直至不能剔除

【前进】:根据设定条件,每次纳入一个自变量直至无法继续纳入

简单回归只有一个自变量,仅能采用【输入】

多重线性回归,采用【步进】,是【后退】与【前进】的集合

 

4.模型检测

第三列‘除去的变量’,因为采用的是【输入】,全部纳入模型中,没有移除变量,所以为空

 

标转化系数分别为 0.407,0.499 也就是说,客流量对销售额的影响要大于广告费用对销售额的影响

 

5.利用回归模型进行预测

和简单线性回归一样

 

 

### 如何在SPSS中执行回归分析 #### 使用SPSS进行回归分析的操作流程 在SPSS中执行回归分析是一种常见的数据分析方法,主要用于探索变量之间的关系并预测因变量的变化。以下是关于如何利用SPSS Statistics完成回归分析的具体说明: 1. **数据准备** 首先,在SPSS的数据视图中输入或导入所需的数据集。确保每一列代表一个变量,并且每行对应于一条观测记录。对于回归分析而言,通常需要至少两个变量:一个是作为因变量(Dependent Variable),另一个是自变量(Independent Variables)。这些变量可以是一个或者多个[^1]。 2. **启动回归分析功能** 转至菜单栏上的 `Analyze` -> `Regression` -> `Linear...` 来打开线性回归对话框。此选项允许用户指定模型中的各个组成部分以及设置其他参数[^2]。 3. **定义变量角色** 在弹出的窗口里,将目标变量拖放到“Dependent”框内;接着把可能影响该目标变量的一个或多个人口统计学特征或其他因素放入“Independents”列表之中。注意区分哪些是你希望解释变化的主要原因所在——即独立贡献者们的位置安排得当与否至关重要。 4. **配置额外选项** 可选地调整一些高级设定比如进入标准、移除准则等,默认情况下采用的是Enter法意味着所有选定的预估器都会被纳入最终方程计算当中去除非另有特别指示之外均如此处理即可满足大多数实际需求场景下的应用要求。 5. **运行分析与查看结果** 完成上述步骤之后点击OK按钮提交作业等待几秒钟便能看到一系列表格形式呈现出来的输出文件其中包括但不限于模型摘要(Model Summary),ANOVA表(Analysis of Variance Table)还有系数(Coefficients)等内容项用来帮助研究者理解各自变数间相互作用模式及其强度大小等方面的信息。 ```python # 示例Python代码展示如何调用外部库模拟简单线性回归过程 (仅作演示用途并非直接关联SPSS操作) import numpy as np from sklearn.linear_model import LinearRegression # 创建虚拟数据集 X = np.array([[1], [2], [3]]) y = np.array([2, 4, 6]) model = LinearRegression() model.fit(X, y) print(f'斜率: {model.coef_[0]}') print(f'截距: {model.intercept_}') ``` 以上就是有关怎样借助IBM SPSS Software平台实施基本类型的回归建模任务的大致介绍啦! ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值