求取二项分布

本文介绍了如何使用记忆递归函数来求取二项分布的概率值,通过剪枝和优化减少存储需求。借助帕斯卡恒等式,证明了递归计算二项分布的正确性,例如在5次独立实验中,成功概率为p时,求3次成功概率的递归过程。
摘要由CSDN通过智能技术生成
1.利用递归函数求取二项分布概率值,源码如下。
public static double binomial(int N, int k, double p) {
		
		if (N == 0 && k == 0)
			return 1.0;
		if (N < 0 || k < 0)
			return 0.0;

		return (1 - p) * binomial(N - 1, k, p) + p * binomial(N - 1, k - 1, p);

	}

2.利用记忆递归函数求取二项分布概率值,源码如下。

static double[][] array_save = new double[200 + 1][200 + 1];
  for (int i = 0; i < 201; i++)
      Arrays.fill(array_save[i], -1.0);

public static double binomial_save(int N, int k, double p) {

		if (N < 0 || k < 0)
		    return 0.0;
		if (array_save[N][k] != -1) 
		    return array_save[N][k];
		
		array_save[N][k] = (1 - p) * binomial_save(N - 1, k, p) + p
				* binomial_save(N - 1, k - 1, p);
	
		return array_save[N][k];

	}
3.利用动态规划求取二项分布概率值,源码如下。
static double[][] array &#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值