使用了bart模型:
from transformers import BartForConditionalGeneration, BartTokenizer, BartConfig
在使用BartTokenizer.batch_encode_plus函数时, 第一个参数字符串忘了放到列表符中,
即:
LONG_BORING_TENNIS_ARTICLE=”dasfafdsafdfdasfdsaafddf....asdfafsaafsdsaf..."
此处的数据长度影响不大,测试时用了1000个字符。
indexed_tokens =tokenizer.batch_encode_plus(LONG_BORING_TENNIS_ARTICLE,return_tensors='pt',max_length=1024 ) ["input_ids"].to(device) #batch_encode_plus
此时使用
summary_ids=model.generate(indexed_tokens,num_beams=4,length_penalty=2.0, max_length=142, min_length=56,no_repeat_ngram_size=3) ## ok
会导致暴显存,此处输入的字符串长度关系不大。
正确的作法是在 LONG_BORING_TENNIS_ARTICLE 添加列表操作符,即:
indexed_tokens =tokenizer.batch_encode_plus([LONG_BORING_TENNIS_ARTICLE],return_tensors='pt',max_length=1024 ) ["input_ids"].to(device) #batch_encode_plus
经过反复确认,应该是transformers库的bug, 版本 4.12.1 最新版本 4.17.0 同样存在。目前只发现在bart模型上有此问题。