bar模型异常暴显存事件的处理

使用了bart模型:

from transformers import BartForConditionalGeneration, BartTokenizer, BartConfig

在使用BartTokenizer.batch_encode_plus函数时, 第一个参数字符串忘了放到列表符中,

即:

LONG_BORING_TENNIS_ARTICLE=”dasfafdsafdfdasfdsaafddf....asdfafsaafsdsaf..."

此处的数据长度影响不大,测试时用了1000个字符。

indexed_tokens =tokenizer.batch_encode_plus(LONG_BORING_TENNIS_ARTICLE,return_tensors='pt',max_length=1024 ) ["input_ids"].to(device) #batch_encode_plus

此时使用

summary_ids=model.generate(indexed_tokens,num_beams=4,length_penalty=2.0, max_length=142, min_length=56,no_repeat_ngram_size=3) ## ok

会导致暴显存,此处输入的字符串长度关系不大。

正确的作法是在 LONG_BORING_TENNIS_ARTICLE 添加列表操作符,即:

indexed_tokens =tokenizer.batch_encode_plus([LONG_BORING_TENNIS_ARTICLE],return_tensors='pt',max_length=1024 ) ["input_ids"].to(device) #batch_encode_plus

经过反复确认,应该是transformers库的bug, 版本 4.12.1 最新版本 4.17.0 同样存在。目前只发现在bart模型上有此问题。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值