卷积可视化详解_CSDN@zxy的博客-CSDN博客_卷积可视化
特征图谱的可视化方案分为两种
1.一类是直接将某一层的feature map映射到0-255的范围,变成图像
2.另一类是使用一个反卷积网络(反卷积、反池化)将feature map变成图像,从而达到可视化feature map的目的。
特征图谱可视化画的意义
1. 改进训练网络结构
图(b)包含过多低频、高频信息,很少有中频信息;图(d)中存在较多混叠伪影。因此对神经网络进行如下改进:
将卷积核尺寸从11×11缩小为7×7
将卷积层步长从4缩减为2
改进后对应特征层输出如图(c)和图(e)所示,特征提取结果更为鲜明,无效特征(dead feature map)减少,且特征图更加清晰,混影减少。
2. 删除冗余节点实现模型压缩
可视化结果里有一些纯黑的特征图(下图红色方框标出),即所谓的 dead feature map,且不同的输入数据下固定卷积层的 dead feature map 位置相同。这些 dead feature map 没有办法提供有效信息,又因它们位置固定,因此可以将对应的卷积核从网络中剔除,起到模型压缩的作用。