关键点检测——热图标签(Ground Truth)构建

参考文献:

https://blog.csdn.net/zziahgf/article/details/79704788

https://zhuanlan.zhihu.com/p/37933909

https://blog.csdn.net/u013841196/article/details/85643310#comments

\left ( x_{k}, y_{k} \right )   是真实标签的的坐标。控制该函数的左右移动情况

\left ( x, y\right )是热图的feature map 中每一个像素位置

\sigma:控制着该函数的胖瘦,也就是宽窄,涉及的范围多大,即径向范围

代码实现:

import time
import numpy as np
import cv2
import matplotlib.pyplot as plt


def CenterLabelHeatMap(img_width, img_height, c_x, c_y, sigma):
    X1 = np.linspace(1, img_width, img_width)
    Y1 = np.linspace(1, img_height, img_height)
    [X, Y] = np.meshgrid(X1, Y1)
    X = X - c_x
    Y = Y - c_y
    D2 = X * X + Y * Y
    E2 = 2.0 * sigma * sigma
    Exponent = D2 / E2
    heatmap = np.exp(-Exponent)
    return heatmap

#################另一种生成方法############


# Compute gaussian kernel
def CenterGaussianHeatMap(img_height, img_width, c_x, c_y, variance):
    gaussian_map = np.zeros((img_height, img_width))
    for x_p in range(img_width):
        for y_p in range(img_height):
            dist_sq = (x_p - c_x) * (x_p - c_x) + \
                      (y_p - c_y) * (y_p - c_y)
            exponent = dist_sq / 2.0 / variance / variance
            gaussian_map[y_p, x_p] = np.exp(-exponent)
    return gaussian_map


image_file = 'test.jpg'
img = cv2.imread(image_file)
img = img[:,:,::-1]

height, width,_ = np.shape(img)
cy, cx = height/2.0, width/2.0

start = time.time()
heatmap1 = CenterLabelHeatMap(width, height, cx, cy, 21)
t1 = time.time() - start

start = time.time()
heatmap2 = CenterGaussianHeatMap(height, width, cx, cy, 21)
t2 = time.time() - start

print(t1, t2)

plt.subplot(1,2,1)
plt.imshow(heatmap1)
plt.subplot(1,2,2)
plt.imshow(heatmap2)
plt.show()

print('End.')

 

### 修改 PoseMobileNet 实现自定义关键点检测 在计算机视觉领域,PoseMobileNet 是一种轻量级网络架构,专为移动设备上的实时姿态估计而设计。为了适应特定应用场景的需求,在该模型中添加或修改自定义关键点成为必要。 #### 定义新的关键点类别 当计划扩展现有的人体关节集合时,需先确定新增加的关键部位名称及其数量。这一步骤通常涉及重新标注训练数据集中的像样本,确保每个实例都包含新旧两类标记位置的信息[^1]。 对于 PyTorch 版本的实现而言,可以通过调整 `config.py` 文件内的参数来指定总共有多少种不同的骨骼节点: ```python num_joints = 17 + custom_keypoints_count # 原始 COCO 数据集中有 17 类标准姿势关键点 ``` 此处假设原始框架支持的标准关节数目为 17(对应于 MS-COCO 数据集),如果要加入额外 n 个用户自定义的兴趣区域,则应相应增加此数值至 (17+n)[^2]。 #### 构建对应的生成器 由于大多数基于 CNN 的多人姿态估计算法依赖于高斯分布形式的概率密度函数构建目标特征映射,因此还需要同步更新用于生产这些响应强度矩阵的方法逻辑。具体来说就是改变原版代码里负责创建 ground truth heatmap 的部分,使其能够处理更大范围内的坐标索引并正确反映所有感兴趣区间的相对重要程度[^3]。 一般情况下,这部分改动会涉及到如下几个方面的工作: - 扩展输入张量维度以容纳更多通道; - 更新标签文件解析流程以便识别新型类别的存在; - 调整损失函数权重分配策略从而平衡不同种类之间的差异性影响。 #### 训练过程中的注意事项 完成上述准备工作之后就可以按照常规方式启动新一轮迭代优化程序了。不过值得注意的是,随着输出空间复杂度的增长可能会导致过拟合现象更加明显,所以建议适当降低学习率、引入正则化项以及采用交叉验证技术等多种手段加以防范[^4]。 最后提醒一点,考虑到实际部署环境下的资源消耗情况,务必测试最终版本能否满足预期性能指标的要求——即既能在合理时间内给出预测结果又不会占用过多内存/CPU/GPU 等硬件设施。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值