由于最近我的算法老师给的我一篇算法文章,论文名为《An Evolutionary Many-Objective Optimization
Algorithm Based on Dominance and Decomposition》作者是Ke Li, Student Member, IEEE, Kalyanmoy Deb, Fellow, IEEE, Qingfu Zhang, Senior Member, IEEE, and Sam Kwong, Fellow, IEEE,作为一个对多目标优化问题从来没接触过的人,这可着实花了我不少时间来琢磨,下面我就讲讲在这篇论文中的我所理解的算法。
名词解释:
- EF:理论上的pareto最优向量集
- EMO:进化多目标优化
- EA:进化算法
- MOEA:多目标进化算法
- MOEA/D:基于分解的多目标进化算法
- MOEA/DD:基于支配和分解的多目标优化进化算法
- NSGA-II:非支配排序遗传算法
多目标优化:
首先,多目标优化的概念就是好比说:你想买车,但是呢,你又想买的车价格低,又想油耗低,安全性高,但是我们都知道这个常识,汽车的价格越低,各个性能就差,此时的价格低,油耗低,安全性高就组成了一个具有相互冲突的目标函数。多目标优化问题(MOP)可以描述为:
- J、K:不等式和等式约束条件的个数
- 决策空间:
即可行域,满足gj(x)和hk(x)约束的一块x区域,可看做定义域
- 目标空间:
- m个相互冲突的目标函数:
- 候选解(决策变量):
f1,f2,....fm对应上面买车的例子的就是价格,油耗,安全性能。基于分解就是把F(x)分解成m个标量化的小目标,求F(x)的最小值,可以转化成求所有的f1,f2,....fm合成的最小值,但是这个时候又会出现一个问题,那就是f1可能是想得到一个最大值,就比如f1为安全性,f2为油耗,f3为价格,则我们把f1转化成求最小值,可以使用取f1的倒数,即f1=1/f1,那么,f1,f2,....fm都是越小越好的,则最后取得的F(x)就是最小的。
- 收敛性:Pareto解集与真实的最优解集(EF)尽可能的接近,越接近越好
- 多样性:沿着EF方向解扩散,即在目标空间中分布范围尽可能广(EF左右 全方位扩散)。由此可见解集的收敛性和多样性是相互冲突的