0711 深度多视图学习

Deep learning for multi-view data

  1. 2011 Multimodal deep learning
    autoencoder-based (splitAE)
    1/3 video only 1/3 audio only, 1/3 both
    encode共享,分别decode
    在这里插入图片描述
  • Deep Canonical Correlation Analysis(DCCA)
    two DNNs f and g are used to extract nonlinear features for each view and the canonical correlation between the extracted features f(X) and g(Y) is maximized. U’f is the final mappingprojection

  • Deep Canonically Correlated Auto-Encoders
    在这里插入图片描述

  • Variational Canonical Correlation Analysis

  • On Deep Multi-View Representation Learning: Objectives and Optimization
    在这里插入图片描述

待看:

  • Multiview Deep Learning
    Sun S., Mao L., Dong Z., Wu L. (2019) Multiview Deep Learning. In: Multiview Machine Learning. Springer, Singapore

通过构建层次结构获得共享的表示。

  • Joint Representation
    • Probabilistic Graphical Models
      Sun S, Liu Q (2018) Multi-view deep gaussian processes. In: Proceedings of the international
      conference on neural information processing
    • Fusion of Networks
      • Split Multiview Autoencoders
      • Representation Fusion

构造具有多个视图的不同表示形式的结构化空间,这给不同视图上的表示形式之间提供约束。

  • Complementary Structured Space
    • DCCA
    • DCCAE
      • Correlated Autoencoders (Corr-AE)
      • Minimum-Distance Autoencoders (DistAE)
        在这里插入图片描述

显式地构造不同视图或表示之间的连接或关系,这允许不同视图彼此转换或映射。

  • View Mapping
    • Generative Models
      Deep Conditional Generative Adversarial Networks
      Multiview Attention RNN

multi-view deep clustering

自表达

  • 2018 Deep multimodal subspace clustering networks
    CNN-based autoencoder
    Fig3
    在这里插入图片描述

  • Multi-view Deep Subspace Clustering Networks
    auto-encoder
    在这里插入图片描述

  • 2019 Deep Adversarial Multi-view Clustering Network(DAMC)
    AE + GAN
    在这里插入图片描述

  • Multi-view Generative Adversarial Networks
    BiGAN在这里插入图片描述

  • 2017 AAAI Multi-View Clustering via Deep Matrix Factorization
    在这里插入图片描述

  • 2018 IJCAI Deep Multi-View Concept Learning

  • 2020 AAAI Shared Generative Latent Representation Learning for Multi-View Clustering
    在这里插入图片描述


imbalanced deep learning

  • data-level /re-sampling --deep CNN
    ROS/ augmentation : SMOTE
    RUS : EasyEnsemble
    hybrid
    Dynamic sampling
  1. 从多数类别中删除样本的方法(欠采样,如RUS、NearMiss[11]、ENN[12]、Tomeklink[13]等)
  2. 为少数类别生成新样本的方法(过采样,如SMOTE[14],ADASYN[15],Borderline-SMOTE[16]等)
  3. 结合上述两种方案的混合类方法(过采样+欠采样去噪,如SMOTE+ENN[17]等)
  • cost-sensitive

  • ensemble learning
    SMOTE+Boosting=SMOTEBoost [21];
    SMOTE+Bagging=SMOTEBagging [22];

  • Survey on deep learning with class imbalance
  • Imbalanced deep learning by minority class incremental rectification
  • Learning deep representation for imbalanced classification
  • Justin M. Johnson and Taghi M. Khoshgoftaar.Survey on deep learning with class imbalance.Johnson and Khoshgoftaar J Big Data.(2019) 6:27

semi-supervised learning

  1. Pre-training
  • 无标签数据初始化网络,有标签数据微调
    • 无监督预训练
    • 伪有监督预训练
  • 有标签数据训练网络, self train
    有标签数据训练一个分类器,然后用这个分类器对无标签数据进行分类,产生伪标签, 把选出来的更可信的无标签样本用来训练分类器
  1. 生成式方法
    基于生成式模型的方法。此类方法假设所有数据(无论是否有标记)都是由同一个潜在的模型“生成”的。这个假设使得我们能通过潜在模型的参数将未标记数据与学习目标联系起来,而未标记数据的标记则可看作模型的缺失参数,通常可基于EM算法进行极大似然估计求解。此类方法的区别主要在于生成式模型的假设,不同的模型假设将产生不同的方法

  2. 基于图的半监督算法
    标签传播
    通过构造图结构来寻找训练数据中有标签数据和无标签数据的关系。标签传播过程,从有标签的数据流向无标签数据.

  3. 基于分歧的方法
    co-training
    不同角度训练出来的分类器对无标签样本进行分类,再选出认为可信的无标签样本加入训练集中。

  • 2
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值