pyg-创建消息传递网络

本文介绍了如何使用PyTorch Geometric库创建消息传递网络,以处理图数据。EdgeConv类是一个例子,它通过`MessagePassing`抽象进行最大池化聚合。`forward`方法接收节点特征和边索引,`message`方法计算相邻节点特征的组合。整个过程展示了如何将点云数据转换为图网络的处理方式。
摘要由CSDN通过智能技术生成

创建消息传递网络 — pytorch_geometric 文档 (pytorch-geometric.readthedocs.io)

https://arxiv.org/abs/1801.07829

import torch
from torch.nn import Sequential as Seq, Linear, ReLU
from torch_geometric.nn import MessagePassing

class EdgeConv(MessagePassing):
    def __init__(self, in_channels, out_channels):
        super().__init__(aggr='max') #  "Max" aggregation.
        self.mlp = Seq(Linear(2 * in_channels, out_channels),
                       ReLU(),
                       Linear(out_channels,

  • 25
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值