1. 背景问题
航空公司有一趟2个月之后起飞的航班,现有150个座位需要销售。航空公司计划推出2种票价:特价票(supersaver fare)140美元、全价票240(full-coach fare)美元。对于特价票而言,在两个月中( 0 ≤ t ≤ 2 0\leq t\leq 2 0≤t≤2),需求率都为 λ 1 = 100 \lambda_1=100 λ1=100;而对于全价票,第一个月需求为 0 0 0,第二个月需求为 50 50 50,亦即 λ 2 ( t ) = { 0 , if 0 ≤ t ≤ 1 50 , if 1 ≤ t ≤ 2 \lambda_2(t) = \begin{cases} 0, & \text{if }\;0\leq t\leq 1 \\ 50, & \text{if}\; 1\leq t\leq 2\end{cases} λ2(t)={0,50,if 0≤t≤1if1≤t≤2。为了使预期收益最大化,航空公司该如何决策价格变动的时机(decide the optimal timing of prices changes)?