城市轨道交通系统的动态起点-终点预测:一种多分辨率时空深度学习方法

9b2bbf727e5a9e3297c11457aa9d53e4.png

71888317b693d6944bd82647a22bebae.png

文章信息

《Dynamic Origin-Destination Prediction in Urban Rail Systems: A Multi-Resolution Spatio-Temporal Deep Learning Approach》是2021年发表在期刊《IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTA TION SYSTEMS》上的一篇文章。

e89e5325476e2e7a027c71fb374b01da.png

185393e78b926f1b95208202568bd3a9.png

摘要

短期需求预测(通常定义为未来不到一小时的时间)对于实现动态控制策略和在运输应用程序中提供有用的客户信息至关重要。通过了解预期的需求,公交运营商可以在需求激增之前部署实时控制策略,并将异常对服务质量和乘客体验的影响降至最低。交通需求预测模型的一个最有用的应用是预测车站站台的拥挤和车辆拥挤。这些要求提供关于出发地-目的地(OD)需求的信息,提供乘客如何以及何时进出服务的详细概况。然而,现有的工作在文献中是有限的,绝大多数集中在预测旅客到达车站。这些信息虽然有用,但对于许多实际应用来说是不完整的。文章通过开发一种可扩展的方法,对运输系统的实时、短期OD需求进行预测,来解决这一不足。该模型由三个模块组成:多分辨率空间特征提取模块(利用通道方式的注意块捕获局部空间依赖关系)、辅助信息编码模块(AIE)(对外生信息进行编码)和需求时间演化模块。t时刻的OD需求,以N × N矩阵表示,在两个不同的分支中处理。在一个分支中,文章使用离散小波变换(DWT)将需求分解成不同的时间和频率变化,检测在原始数据中不可见的模式。另一种方法是利用三层卷积神经网络(CNN)直接从OD需求中学习空间依赖性。文章使用挤压-激励层来根据特征图对最终预测的贡献来加权特征图,而不是同等地对待结果变换的每个通道。然后使用卷积长短期记忆网络(ConvLSTM)来捕获需求的时间演化。该研究以香港地下铁路(MTR)系统两个月的自动收费数据为例,说明该方法的可行性。对该模型的广泛评价表明了该模型相对于其他比较方法的优越性。

11d54dd2a0f7acb51c1952b3e90477db.png

5f0fe804b461680d8e392018f2c320a4.png

介绍

文章提出了一种端到端深度神经网络方案来解决这一OD预测问题。贡献总结如下:

(1)文章提出了一种新颖的、可扩展的、深度学习的体系结构,利用基于出口的观测数据,在公交网络中进行实时OD预测。

(2)文章提出了一个多分辨率时空神经网络模型(MRSTN),该模型捕获了空间和时间的相关性,其中离散小波变换用于提供需求的多分辨率分解。

(3)在整个香港地铁系统上测试了所提出的模型,并实证地显示了该研究所提出的模型比其他比较模型的优越性。

523211738a328ad083c69e0e58f7493f.png

a77c277494fe6dd027d26b781070241b.png

方法

基础知识

将每个时间段内的出发地-目的地矩阵表示为一个二维矩阵ODt∈ RN×N,其中N表示公交网络中的站点数量。具体来说,ODt(i, j)表示在时间间隔t内从i站到达j站的需求。应该注意的是某一特定出行的目的地只有在出行结束时才被观察到。换句话说,真正的ODt(i, j)只有在出行时间和运输计划的时间滞后后才能观察到,这个滞后甚至可以是一个小时或更长时间。这是与到达预测问题的不同之处之一,在到达预测模型应用之前,所有的到达都会被观察到。因此,需要区分模型估计阶段的可用信息和实时信息。对于模型估计,真实的OD需求可以从历史自动数据收集(AFC)事务的数据库中得到。设ODt(i, j)表示时间间隔t中i站向j站的需求。这些出行可能要过好几个时间间隔才能完成。然而,在实时情况下,只能通过出口计数得知OD值。设ODexitst表示基于出口的OD矩阵,其中ODexitst (i, j)表示以i站为起点的t时间区间内从j站出站的乘客人数。该研究的目标是根据ODexits t−h,h = H…0,来预测ODt+k(i, j),k = 1…K,其中k为预测窗口,H为过去的时间窗口。

文章提出的模型(MRSTN)由三个模块组成,如图1所示:多分辨率空间特征提取模块,用于捕获局部空间依赖性;辅助信息编码模块,用于捕获外生事件的影响; 每个ODexits t−h,表示为一个矩阵(图像),在两个独立的分支中处理。在一个分支中,使用离散小波变换(DWT)将需求分解成不同的时间和频率变化。这种分解生成更丰富的输入表示,在许多信号和图像处理任务中是一种有用的技术,并能够检测原始数据中不可见的模式。每个分支通过卷积神经网络(CNN)进一步处理,得到其特征编码。在另一个分支中,利用三个具有跳跃连接的卷积神经网络层直接从OD需求中学习空间依赖关系。此外,一个单独的模块(AIE)对辅助信息进行编码,其中包括到达出发地车站的旅客人数、天气状况和一天中的时间。这些特征映射被连接起来,以提供原始需求矩阵的多视图表示。然后,基于特征映射对最终预测的贡献,使用挤压-激励层来加权特征映射。然后使用卷积长短期记忆网络(ConvLSTM)来捕获需求的时间演化。得到的特征图随后通过两个卷积神经网络。在下面的部分中,我们将详细描述模型的每个部分。

b778ce09597a1a7c671f1572aad5c5fe.png

离散小波变换

离散小波变换(DWT)是预测任务中提取特征的有力工具。这在一定程度上是因为小波将傅里叶变换的概念扩展到更一般的正交基上,通过时域和频域的小波(因此得名小波)的组合来表示输入信号。与傅里叶变换相比,小波有两个重要的特点:多分辨率和正交性。多分辨率可以通过放大和缩小、捕捉不同的时间和频率变化来分析图像,对于分析多尺度过程产生的信号非常有用。正交性意味着DWT通道之间不存在冗余。以往的研究大多集中在单变量时间序列上,因此采用了一维DWT。一维DWT将一个电平的任何信号分解为另一个更高电平的两个子带。对于二维图像,行和列被视为一维信号,每一轮DWT的两次传递分别在行和列上完成。通常情况下,子带的系数用于增加原始输入的系数,然后输入到监督学习算法中。设I是M × N的输入OD矩阵。二维DWT将矩阵分解为四个子带:

dc663a55adcaa8a52361dcb626673bb1.png

其中:

699a19b529c298dbf9ae23666a33a3b2.png

DWT放大了不同频率子带的特征,使MRSTN能够检测原始数据中不可见的模式。因此,在每个层次上得到四个子带图像,其中三个子带图像LH、HL、HH分别是水平、垂直、对角线方向上的细节图像(图2)。

3f8029f146aecf75c27c2607fc178e4c.png

多分辨率空间特征提取

第一层利用卷积神经网络捕捉空间交互作用。每个ODexitst−h,h = h…0 通过两个分支。在第一个分支中,它经过3个CNN块,每个CNN块包括一个卷积层,接着是一个批处理归一化层和一个ReLU激活函数。3个CNN块的filter个数分别为64、128、128,内核大小为3 × 3。因为希望输出与输入具有相同的维数,所以我们使用大小为1的stride,并且没有池化。这个支路的输出f1计算如下:

48f2d1f5c179b616a75676e7b9d9a0ba.png

在一个单独的分支中,一级2D-DWT将ODexitst−h分解为四个子带,以捕获数据中不同的时间和频率变化(图2):LL(近似矩阵)、LH(水平矩阵)、HL(垂直矩阵)和HH(对角矩阵)。每个子带由CNN进一步处理,CNN带有64个3×3的滤波器,步幅为1,然后是批量标准化层和ReLU激活函数。因此,该分支F2的输出为:

a78c1a15ba7896cd185f7c0d1af9cc75.png

然后将两个分支的学习特征映射连接起来。还使用了跳过连接来避免消失梯度问题。

辅助信息编码(AIE)

让At∈RN×1,At= [at,1, at,2,…,at,N]表示时间间隔t时各站点到达旅客的N维列向量,其中,N表示公交网络中站点数量。使用Dark Sky API[45]来提取案例研究期间天气状况的信息。这些天气被分为正常、下雨和下雪。我们使用one-hot变换对条件进行编码。这三个输入(时间、一天中的时间和天气条件)被连接起来,并通过一个卷积神经网络,该网络包含64个大小为3×3、步长为1的滤波器。让FAux作为这个转换的输出。

挤压-激励层

然后将所有之前转换的输出连接在一起,提供信息的多视图编码,即:

2fa5d2021a3d6d54eab732b9911ad9ea.png

文章使用提出的挤压和激励(SE)块来学习每个通道的重要性。这一块有效地充当了一个门控注意块,它学习对预测任务信息量更大的通道施加更多的权重。文章首先利用全局平均池对变换输出f3的空间维度(H,W)进行挤压,并生成基于通道的统计量z∈RC,其中第c个元素的计算方法为:

bef494c8cdc2b35eb96f03e3f633d269.png

使用卷积滤波器生成基于通道的统计的主要缺点是,它们只提取其局部接收域内的信息。相比之下,挤压功能利用的是局部接受域以外的上下文信息。通过挤压操作总结出每个通道的信息后,一个激励变换对其输出进行操作,以捕获通道方面的相互依赖关系。具体来说,采用一种具有Sigmoid激活函数的简单门控机制如下:

3937a83f467d32c5613261cd0b24f27c.png

这两个FC层有效地形成了瓶颈层,在提高泛化和限制模型复杂度方面被证明是有效的。最后的输出为:

5429c3f2bd1233cbd9fe1c4cf63ee1c0.png

时间特征提取

卷积LSTM网络是LSTM模型的一种变体。使用LSTM捕获时间依赖关系的缺点是它们不能使用输入中编码的空间信息。ConvLSTM通过在输入到状态和状态到状态的转换中都具有卷积结构来解决这个问题,卷积结构可以端到端训练。ConvLSTM通过输入和其本地邻居的过去状态来确定网格中某个细胞的未来状态。在每个时间步长t时,ConvLSTM单元接收到三个输入:过去的细胞 Ct−1、Xt和之前的隐藏状态的细胞Ht−1。输入门控制过去输入的信息积累,遗忘门ft决定过去的cell状态Ct−1有多少应该被遗忘,最后,Ot决定有多少来自ctt的信息应该被存储在隐藏状态Ht中。在数学上,它可以写成:

e4876d58d364d37124a34c9e98dfa3be.png

随后ConvLSTM层的输出被两个128和1(即最终预测)滤波器的CNN块转换,stride为1,没有pooling层。

c2033dde4f7c00c5a331581541e03845.png

a5b612a96f27aa55c2567b36913dba1c.png

实验

文章利用香港地下铁路系统的数据,评估提出的模型。该网络由97个站台组成。当乘客进出系统时,交易会被记录下来,从而显示出进出车站和时间戳。该研究使用了2018年10月和11月两个月的AFC交易,不包括周末,共计40天。最后7天用于测试,其余用于模型训练。每天被离散成15分钟,目标是预测接下来15分钟的OD需求。

6edcb670952301268d971dce50793345.png

7efae220b2f7d521d6ae940daa220830.png

Attention

如果你和我一样是轨道交通、道路交通、城市规划相关领域的,可以加微信:Dr_JinleiZhang,备注“进群”,加入交通大数据交流群!希望我们共同进步!

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

当交通遇上机器学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值