【论文笔记】图像分割和图像配准联合学习模型——DeepAtlas

本文是论文《DeepAtlas: Joint Semi-Supervised Learning of Image Registration and Segmentation》的阅读笔记。

文章第一个提出了一个图像配准和图像分割联合学习的网络模型 DeepAtlas,该模型实现了弱监督的图像配准和半监督的图像分割。在图像配准时使用图像的分割标签作为监督数据,如果没有分割标签,则通过分割网络产生;而经过配准后的图像增加了在图像分割时可利用的训练数据的量,相当于是一种数据增强。该模型不仅在分割和配准的精度上有所提升,并且还可以在训练数据有限的情况下实现较好的效果。

一、记号

  • I m I_m Im:浮动图像(moving image)
  • I t I_t It:目标图像(target image)
  • F R \mathcal{F}_R FR:配准网络
  • θ r \theta_r θr:配准网络的参数
  • F S \mathcal{F}_S FS:分割网络
  • θ s \theta_s θs:分割网络的参数
  • u = F R ( I m , I t ; θ r ) u=\mathcal{F}_R(I_m,I_t;\theta_r) u=FR(Im,It;θr):形变场
  • ϕ − 1 = u + i d \phi^{-1}=u+id ϕ1=u+id:形变图,其中 i d id id 是恒等变换
  • I m w = I m ∘ ϕ − 1 I_m^w=I_m\circ\phi^{-1} Imw=Imϕ1:配准后的图像
  • S t S_t St:目标图像分割标签
  • S m w = S m ∘ ϕ − 1 S_m^w=S_m\circ\phi^{-1} Smw=Smϕ1:配准后图像分割标签

二、网络结构

DeepAtlas 的目的是当数据集中只有少量的分割标签可用时,通过联合训练来让分割和配准实现较高的精度。

网络的结构如上图所示,蓝色的实线表示弱监督的配准,黄色虚线表示半监督的分割。

文章在附件中给出了分割网络和配准网络的具体结构,如下图左右两图所示:

1. 配准网络

配准网络的损失主要有三个损失函数组成:配准正则损失 L r \mathcal{L}_r Lr,图像相似度损失 L i \mathcal{L}_i Li 和解剖损失(分割相似度损失) L a \mathcal{L}_a La。配准正则损失 L r \mathcal{L}_r Lr 可以让形变场 ϕ \phi ϕ 变得光滑,图像相似度损失 L i \mathcal{L}_i Li 用来评价浮动图像 I m I_m Im 和配准后图像 I m w I_m^w Imw 之间的相似度,解剖损失(分割相似度损失) L a \mathcal{L}_a La 是目标图像分割标签 S t S_t St 和配准后图像分割标签 S m w S_m^w Smw 之间的相似度损失。

如此一来,配准学习的过程可以由下式表示:
θ r ⋆ = argmin ⁡ θ r { L i ( I m ∘ Φ − 1 , I t ) + λ r L r ( Φ − 1 ) + λ a L a ( S m ∘ Φ − 1 , S t ) } \theta_{r}^{\star}=\underset{\theta_{r}}{\operatorname{argmin}}\left\{\mathcal{L}_{i}\left(I_{m} \circ \Phi^{-1}, I_{t}\right)+\lambda_{r} \mathcal{L}_{r}\left(\Phi^{-1}\right)+\lambda_{a} \mathcal{L}_{a}\left(S_{m} \circ \Phi^{-1}, S_{t}\right)\right\} θr=θrargmin{Li(ImΦ1,It)+λrLr(Φ1)+λaLa(SmΦ1,St)}
其中 λ r , λ a ≥ 0 \lambda_r,\lambda_a\geq0 λr,λa0

2. 分割网络

分割网络的输入是一张图像 I I I,输出相应的分割结果 S ^ = F S ( I ; θ s ) \hat{S}=\mathcal{F}_S(I;\theta_s) S^=FS(I;θs),分割网络的损失主要有两个损失函数组成:解剖损失 L a \mathcal{L}_a La 和有监督分割损失 L s p \mathcal{L}_{sp} Lsp。解剖损失和配准网络中的相同,有监督的分割损失 L s p ( S ^ , S ) \mathcal{L}_{sp}(\hat{S},S) Lsp(S^,S) 是分割网络的分割结果 S ^ \hat{S} S^ 和人工分割结果 S S S 之间的相似度损失。但是浮动图像 I m I_m Im 和目标图像 I t I_t It 的分割标签的存在情况有多种可能,所以相应的损失函数也存在以下四种情况:
{ L a = L a ( S m ∘ Φ − 1 , F S ( I t ) )  and  L s p = L s p ( F S ( I m ) , S m ) ,  if  I t  is unlabeled;  L a = L a ( F S ( I m ) ∘ Φ − 1 , S t )  and  L s p = L s p ( F S ( I t ) , S t ) ,  if  I m  is unlabeled;  L a = L a ( S m ∘ Φ − 1 , S t )  and  L s p = L s p ( F S ( I m ) , S m ) ,  if  I m  and  I t  are labeled;  L a = L s p = 0 ,  if both  I t  and  I m  are unlabeled.  \left\{\begin{array}{l} \mathcal{L}_{a}=\mathcal{L}_{a}\left(S_{m} \circ \Phi^{-1}, \mathcal{F}_{\mathcal{S}}\left(I_{t}\right)\right) \text { and } \mathcal{L}_{s p}=\mathcal{L}_{s p}\left(\mathcal{F}_{\mathcal{S}}\left(I_{m}\right), S_{m}\right), \text { if } I_{t} \text { is unlabeled; } \\ \mathcal{L}_{a}=\mathcal{L}_{a}\left(\mathcal{F}_{\mathcal{S}}\left(I_{m}\right) \circ \Phi^{-1}, S_{t}\right) \text { and } \mathcal{L}_{s p}=\mathcal{L}_{s p}\left(\mathcal{F}_{\mathcal{S}}\left(I_{t}\right), S_{t}\right), \text { if } I_{m} \text { is unlabeled; } \\ \mathcal{L}_{a}=\mathcal{L}_{a}\left(S_{m} \circ \Phi^{-1}, S_{t}\right) \text { and } \mathcal{L}_{s p}=\mathcal{L}_{s p}\left(\mathcal{F}_{\mathcal{S}}\left(I_{m}\right), S_{m}\right), \text { if } I_{m} \text { and } I_{t} \text { are labeled; } \\ \mathcal{L}_{a}=\mathcal{L}_{s p}=0, \text { if both } I_{t} \text { and } I_{m} \text { are unlabeled. } \end{array}\right. La=La(SmΦ1,FS(It)) and Lsp=Lsp(FS(Im),Sm), if It is unlabeled; La=La(FS(Im)Φ1,St) and Lsp=Lsp(FS(It),St), if Im is unlabeled; La=La(SmΦ1,St) and Lsp=Lsp(FS(Im),Sm), if Im and It are labeled; La=Lsp=0, if both It and Im are unlabeled. 
分割的学习过程可以由下式表示:
θ s ⋆ = argmin ⁡ θ s ( λ a L a + λ s p L s p ) , λ a , λ s p ≥ 0 \theta_{s}^{\star}=\underset{\theta_{s}}{\operatorname{argmin}}\left(\lambda_{a} \mathcal{L}_{a}+\lambda_{s p} \mathcal{L}_{s p}\right), \quad \lambda_{a}, \lambda_{s p} \geq 0 θs=θsargmin(λaLa+λspLsp),λa,λsp0

三、实施细节

  • 解剖相似度损失 L a \mathcal{L}_{a} La 和有监督的分割损失 L s p \mathcal{L}_{sp} Lsp 采用的是 soft multi-class Dice loss:

L dice ( S , S ⋆ ) = 1 − 1 K ∑ k = 1 K ∑ x S k ( x ) S k ⋆ ( x ) ∑ x S k ( x ) + ∑ x S k ⋆ ( x ) \mathcal{L}_{\text {dice}}\left(S, S^{\star}\right)=1-\frac{1}{K} \sum_{k=1}^{K} \frac{\sum_{x} S_{k}(x) S_{k}^{\star}(x)}{\sum_{x} S_{k}(x)+\sum_{x} S_{k}^{\star}(x)} Ldice(S,S)=1K1k=1KxSk(x)+xSk(x)xSk(x)Sk(x)

​ 其中 k k k 表示分割标签的下标, x x x 是体素位置, S S S S ∗ S^* S 是两个要比较的分割标签。

  • 图像相似度损失 L i \mathcal{L}_i Li 采用的是正则化的互相关(NCC):

L i ( I m w , I t ) = 1 − N C C ( I m w , I t ) \mathcal{L}_{i}\left(I_{m}^{w}, I_{t}\right)=1-N C C\left(I_{m}^{w}, I_{t}\right) Li(Imw,It)=1NCC(Imw,It)

  • 配准正则损失 L r \mathcal{L}_r Lr 采用的是弯曲能(bending energy):

L r ( u ) = 1 N ∑ x ∑ i = 1 d ∥ H ( u i ( x ) ) ∥ F 2 \mathcal{L}_{r}(\mathbf{u})=\frac{1}{N} \sum_{\mathbf{x}} \sum_{i=1}^{d}\left\|H\left(u_{i}(\mathbf{x})\right)\right\|_{F}^{2} Lr(u)=N1xi=1dH(ui(x))F2

​ 其中 ∣ ∣ ⋅ ∣ ∣ F ||\cdot||_F F 表示弗罗贝尼乌斯范数(Frobenius norm), H ( u i ( x ) ) H(u_i(x)) H(ui(x)) 是第 i i i 个成分 u ( x ) u(x) u(x) 的 Hessian 矩阵, d d d 表示维度, N N N 表示体素数。

在训练时,会交替的训练分割网络和配准网络,当一个网络在训练时,另一个网络的参数保持不变,并且是每训练配准网络20次才训练分割网络1次,这是因为分割网络更容易收敛。

四、实验结果

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值