图解3种常见的深度学习网络结构:FC、CNN、RNN

本文介绍了深度学习中常见的三种网络结构:全连接网络(FC)、卷积神经网络(CNN)和循环神经网络(RNN)。FC网络适用于简单场景,参数较多;CNN在图像处理中表现出色,利用卷积核减少参数;RNN则擅长处理序列数据,如语音识别和机器翻译。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


导读:深度学习可以应用在各大领域中,根据应用情况的不同,深度神经网络的形态也各不相同。

常见的深度学习模型主要有全连接(Fully Connected,FC)网络结构卷积神经网络(Convolutional Neural Network,CNN)和循环神经网络(Recurrent Neural Network,RNN)。

它们均有着自身的特点,在不同的场景中发挥着重要作用。本文将为读者介绍三种模型的基本概念以及它们各自适用的场景。

作者:刘祥龙 杨晴虹 胡晓光 于佃海 白浩杰 深度学习技术及应用国家工程实验室 百度技术学院

来源:大数据DT(ID:hzdashuju)

01 全连接网络结构

全连接(FC)网络结构是最基本的神经网络/深度神经网络层,全连接层的每一个节点都与上一层的所有节点相连。

全连接层在早期主要用于对提取的特征进行分类,然而由于全连接层所有的输出与输入都是相连的,一般全连接层的参数是最多的,这需要相当数量的存储和计算空间。

参数的冗余问题使单纯的FC组成的常规神经网络很少会被应用于较为复杂的场景中。常规神经网络一般用于依赖所有特征的简单场景,比如说房价预测模型和在线广告推荐模型使用的都是相对标准的全连接神经网络。FC组成的常规神经网络的具体形式如图2-7所示。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值