tensorflow实现卷积与反卷积自编码框架

从DCGAN中了解到了反卷积的操作,所以我本来打算能通过卷积操作作为编码器将一帧图像转换为一个20维的向量,而后再通过反卷积实现解码功能从而达到图像恢复效果,先把程序贴上,后续有空再调整网络层数和参数吧

from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
import os
import numpy as np
import matplotlib.pyplot as plt

mnist = input_data.read_data_sets("/homemnist/raw/",one_hot=True)
sess = tf.InteractiveSession()
X = tf.placeholder(tf.float32,[None,784])
x_image = tf.reshape(X,[-1,28,28,1])



def conv2d(x, W):
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1],padding='SAME')
def max_pool_2x2(x):
    return tf.nn.max_pool(x, ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
def deconv2d(x,w,shape):
    #w = tf.get_variable('w', [3, 3, shape[-1], x.get_shape()[-1]],
             # initializer=tf.random_normal_initializer(stddev=0.02))
    return tf.nn.conv2d_transpose(x, w ,output_shape=shape,strides=[1,2,2,1],padding='SAME')

w_enconv1 = tf.Variable(tf.truncated_normal([3,3,1,16],stddev=0.1),name = 'w_1') #[5,5,1,32]表示卷积核尺寸5*5,1通道,32个不同卷积核
b_enconv1 = tf.Variable( tf.constant(0.1, shape=[16]),name = 'b_1')# bias_variable([32])
w_enconv2 = tf.Variable(tf.truncated_normal([3,3,16,8],stddev=0.1),name = 'w_2')
b_enconv2 = tf.Variable( tf.constant(0.1, shape=[8]),name = 'b_2')
w_enconv3 = tf.Variable(tf.truncated_normal([3,3,8,1],stddev=0.1),name = 'w_3')
b_enconv3 = tf.Variable( tf.constant(0.1, shape=[1]),name = 'b_3')
w_fc = tf.Variable(tf.random_normal([49,20], stddev=0.01),name = 'w_4')

w_defc = tf.Variable(tf.random_normal([20,49], stddev=0.01),name = 'w_5')#[5,5,1,32]表示卷积核尺寸5*5,1通道,32个不同卷积核
b_defc = tf.Variable( tf.constant(0.1, shape=[49]),name = 'b_5')
w_deconv2 = tf.Variable(tf.truncated_normal([3,3,64,1],stddev=0.1),name = 'w_6')
w_deconv3 = tf.Variable(tf.truncated_normal([3,3,1,64],stddev=0.1),name = 'w_7')


def encoder(x_image,w_enconv1,b_enconv1,w_enconv2,b_enconv2,w_enconv3,b_enconv3,w_fc):
    h_conv1 = tf.nn.relu(conv2d(x_image,w_enconv1) + b_enconv1)
    h_pool1 = max_pool_2x2(h_conv1)
    h_conv2 = tf.nn.relu(conv2d(h_pool1,w_enconv2) + b_enconv2)
    h_pool2 = max_pool_2x2(h_conv2)
    h_conv3 = tf.nn.relu(conv2d(h_pool2,w_enconv3) + b_enconv3)
    #conv_shape = h_pool3.get_shape().as_list()
    #nodes = conv_shape[1]*conv_shape[2]*conv_shape[3]            # 向量的长度为矩阵的长宽及深度的乘积
    h_f = tf.reshape(h_conv3,[-1,49])   # conv_shape[0]为一个batch中数据的个数
    h_fc = tf.nn.relu(tf.matmul(h_f, w_fc))
    return h_fc
def decoder(x,w_defc,b_defc,w_deconv2,w_deconv3):
    h_0 = tf.nn.relu(tf.add(tf.matmul(x, w_defc),b_defc))
    h_1 = tf.reshape(h_0,[-1,7,7,1])
    h_deconv1 = tf.nn.sigmoid(deconv2d(h_1,w_deconv2,[batch_size,14,14,64]),name = 'g_h1')
    h_deconv2 = tf.nn.sigmoid(deconv2d(h_deconv1,w_deconv3,[batch_size,28,28,1]),name = 'g_h2')
    return h_deconv2


learning_rate = 0.01
epochs = 100
batch_size = 100
display_step = 5

encoder_op = encoder(x_image,w_enconv1,b_enconv1,w_enconv2,b_enconv2,w_enconv3,b_enconv3,w_fc)
decoder_op = decoder(encoder_op,w_defc,b_defc,w_deconv2,w_deconv3)
y_pred = decoder_op
y_true = x_image
loss = tf.reduce_mean(tf.pow(y_true-y_pred, 2))
optimizer = tf.train.RMSPropOptimizer(learning_rate).minimize(loss)




with tf.Session() as sess:
    tf.global_variables_initializer().run()
    #sess.run(init)
    total_batch = int(mnist.train.num_examples/batch_size)
    for epoch in range (epochs):
        for i in range(total_batch):
            batch_xs, batch_ys = mnist.train.next_batch(batch_size)
            c = sess.run([optimizer,loss],feed_dict= {X: batch_xs})
        if epoch % display_step == 0:
            print("epoch:",'%04d'%(epoch+1))
            #print("epoch:",'%04d'%(epoch+1),"cost = ","{:.9f}".format(c))
    print("over!")
    fh = mnist.test.images[:batch_size]
    encode_decoder = sess.run(y_pred, feed_dict={X: fh})
    plt.subplot(1,2,1);
    plt.imshow(np.reshape(fh[1],(28,28)))
    plt.subplot(1,2,2);
    plt.imshow(np.reshape(encode_decoder[1],(28,28)))

 

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
卷积码是在信息序列通过有限状态移位寄存器的过程中产生的。通常,移存器包含N级(每级A比特),并对应有基于生成多项式的m个线性代数方程,输入数据每次以A位(比特)移入移位寄存器,在此同时有n位(比特)数据作为己编码序列输出,编码效率为A/n。参数N被称作约束长度,它指明了当前的输出数据与多少输入数据有关。它决定了编码的复杂度。 译码器的功能就是,运用一种可以将错误的发生减小到最低程度的规则或方法,从已编码的码字中解出原始信息。在信息序列和码序列之间有一对一的关系。此外,任何信息序列和码序列将与网格图中的唯一一条路径相联系。因而,卷积译码器的工作就是找到网格图中的这一条路径。 Viterbi算法可被描述如下; 把在时刻i,状态 所对应的网格图节点记作 ,每个网相节点被分配一个值 。节点值按如下方式计算: (1)设 , 。 (2)在时刻i,对于进入每个节点的所有路径计算其不完全路径的长度。 (3)令 为在i时刻,到达与状态 。相对应的节点 的最小不完全路径长度。通过在前一节点随机选择一条路径就可产生新的结果。非存留支胳将从网格图中删除。以这种方式,可以从 。处生成一组最小路径。 (4)当L表示输入编码段的数目,其中每段为k比特,m为编码器中的最大穆存器的长度,如果 ,那么令 ,返回第二步。 一旦计算出所有节点值,则从 时刻,状态 。开始,沿网格图中的存留支路反向追寻即可。这样被定义的支路与解码输出将是一一对应的。关于不完全路径长度,硬判决解码将采用Hamming距离,而软判决解码将采用Euclidean距离。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值