深度学习之----双线性插值,转置卷积,反卷积的区别与联系

一.线性插值

这里讲解线性插值法的推导为了给双线性插值公式做铺垫。 
  线性插值法是指使用连接两个已知量的直线来确定在这个两个已知量之间的一个未知量的值的方法。

二.双线性插值

双线性插值是插值算法中的一种,是线性插值的扩展。利用原图像中目标点四周的四个真实存在的像素值来共同决定目标图中的一个像素值,其核心思想是在两个方向分别进行一次线性插值。

三转置卷积:

考虑正常的卷积过程,对于一个 4x4的输入图像,用3x3卷积核,padding=0,stride=1,进行卷积,能得到2x2的输出图像。把输入及输出分别展开成为一维向量,记为 io 。则卷积可以看做是矩阵运算 o=Ci ,其中 C 的表达式如下:

 

现在考虑上采样,也就是deconvolution,或者更合理的称呼为transposed conv。对于2x2的输入图像,希望能得到4x4的输出图像。同样把输入及输出分别展开成为一维向量,记为 o'i' ,此时transposed conv操作为 o'=C^Ti'

注:1.转置卷积就是将卷积转置了一下,然后与输入相乘,可以得到更大的输入,实际上无论卷积还是转置卷积都是将滤波器先转为topliz矩阵,再与reshape后的输入相乘,具体转置卷积的实现是对input加pad实现的,具体可以自己画图看看

     2.转置卷积并不是真正的反卷积,而是只是把input的size变大了而已,

    3.双线性插值与转置卷积的联系是,在fcn中双线性插值可以用转置卷积实现,也不能说实现,可以模拟出双线性插值的功能,因为转置卷积真正的实现需要0pad嘛,



作者:林小北
链接:https://www.zhihu.com/question/50349594/answer/225550884
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

 

转载:https://blog.csdn.net/qinghuaci666/article/details/80832259

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值