Discrete Derivative


前言

在Simulink中,经常会遇到求导的问题。例如:在车辆动力学建模中,已知了速度,求加速度。
加速度,是速度对时间t的导数,也就是对速度求导,那如何对速度进行求导呢?那就要用到Discrete Derivative模块


一、Discrete Derivative

Discrete Derivative的官方解释是:计算离散时间导数。意思就是:求离散时间信号的导数,即信号在离散时间采样点之间的变化速率。公式如下:
在这里插入图片描述
其中
y(tn)是当前时间输出
u(tn)和u(tn-1)是当时时间和上一时刻的输入
Ts是模型的仿真步长(定步长,固定值)
K是一个增益量(一般令K=1)

二、建模

1.搭建模型

模型如下
在这里插入图片描述
子系统V仿真的是速度随时间的变化,v=2t,在求导得出速度。分别记录速度和加速度的图像,使用Data Inspector来进行分析。
模型求解器设置如下:定步长,离散型,仿真步长为0.002,Stop time=0.2s。
仿真结果
图1
在这里插入图片描述
图2
在这里插入图片描述

2.分析数据

速度随时间是按照2的倍数变化,所以速度的变化量为2,Ts=0.002,按照y(tn)计算公式,速度的变化率为1000。
但是,我们也能发现,在第一个步长时间内,速度发生了突变,这是我们在实际建模中必须要考虑的问题。关于如何处理速度发生突变的问题,会引出滤波,在下一篇博客会解决这个问题。


总结

以上就是今天要讲的内容,本文介绍了Discrete Derivative的使用以及实际存在的缺陷,后期会针对这个问题给出解决方案。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值