方阵特征值分解

方阵特征值分解

首先来看矩阵乘法,我们可以将矩阵乘法看作是一种映射,以x' = Ax为例,通过左乘矩阵A将向量x映射到x'。
这里有两种观点:
- 以行的观点:

trans表示转置操作,x与A的每一个行向量的内积构成了x’的每个元素,即x’i = Aix = |Ai|cos<Ai, x>|x|;
一组cos<Ai, x>即为x在以A行向量为基底(单位化之后)的向量空间中的坐标。
由此可以看出x’的每个元素都与x在A的行向量组这组基底上的坐标有关,每个坐标值多乘了一个对应行向量的模。

  • 以列的观点:

在这里插入图片描述

这要好理解得多了:x’为以x各元素为系数的A的列向量的线性组合。
这样得到的将会是,以A列向量组为基底,x为坐标的向量在单位矩阵I的行/列向量组为基底的向量空间中的坐标

下文主要使用到“以行的观点”。


再来看矩阵的逆,什么样的矩阵有逆矩阵?

先说什么是逆矩阵:不妨将逆矩阵看成是一种特殊的、唯一的、普适的“撤销”矩阵。同样以 x' = Ax 为例,任意的方阵A,只要不将x映射到零向量,那么就会存在一个撤销矩阵,使x'映射回x,只不过这个“撤销”矩阵可能随着x的变化而变化就是了,即不具有“普适性”。
那么逆矩阵的特殊性就来了,方阵A如果存在逆矩阵,那么就存在唯一的逆矩阵A',使得     A'Ax = A'Ax = x   , 其中x是任意的。

于是,我们就可以来推导什么样的矩阵有逆矩阵了:
注意到x的任意性,那么如果存在非0向量x使得Ax=0,那么A在这种情况之下连撤销矩阵都不存在了(0向量无法映射到非0向量),那么A肯定不存在逆矩阵。
意思就是说:A不满秩 <=> Ax=0存在非0解 => A不可逆
那么有:A可逆 => A满秩
那么A满秩就一定可逆吗?是的,如果A满秩,那么A一定可以通过一系列的初等行/列变换(也可以包含某一行/列的数乘)变成单位矩阵,即:

在这里插入图片描述

初等变换矩阵是一定存在逆矩阵的(初等操作一定存在逆操作)

于是 A ′ = P n ′ . . . P 2 ′ P 1 ′ A' = Pn'...P2'P1' A=Pn...P2P1 就是A的逆矩阵。
结论:A可逆 <=> A满秩


有了以上两点,我们就可以来讨论相似矩阵了
先说一个直观一点的看法:相似矩阵是同一个线性变换在不同向量空间(基底不同)中的表述。
如果有A = P'BP,其中P'是P的逆矩阵。还是向量左乘一个矩阵:

在这里插入图片描述

P与P’是相互对应的,P将向量映射到一个基底与P的行向量有关的向量空间中去,然后P‘可以将之映射回来。

于是事情已经很明了了:P将x映射到另一个向量空间中去,B在那个向量空间中执行线性变换,最后利用P’映射回来——逆矩阵是一种普适的”撤销“矩阵,这一系列的操作均与直接在原向量空间中左乘A等价!

于是我们说 A相似于 B


有了以上一大堆的铺垫,现在终于可以进入正题:

特征值分解

从等式 A x = λ x Ax =\lambda x Ax=λx 开始:
( A − λ I ) x = 0 → (A - \lambda I)x = \overrightarrow{0} (AλI)x=0 A为方阵,I是单位矩阵,x非0
B = A − λ I B = A - \lambda I B=AλI
Bx=0要有非0解,即非零x属于N(B),那么B必须不满秩,即det(B)=0 ( det(B)=0 <=> B不满秩 <=> Bx=0有非0解,具体证明过程不再赘述.
于是有:
d e t ( A − λ I ) = 0 det(A - \lambda I) = 0 det(AλI)=0解此n次多项式就能得到特征值 λ \lambda λ
依据 λ \lambda λ ( A − λ I ) x = 0 ( A - \lambda I )x = 0 (AλI)x=0即可得到对应的特征向量。

但是对于一个方阵,能求出一些特征值和特征向量,并不代表可以进行特征值分解,一个方阵能进行特征值分解的充要条件是具有n个线性无关的特征向量

啰嗦一下一下,具有n个线性无关的特征向量是什么情形:

一个特征值至少有一个特征向量:因为特征值一定使det(B) = 0,即B不满秩,那么一定存在非零向量使得Bx=0,其基础解系即为一组特征向量(注意,这里的潜在意思也就是说一个特征值可以对应多个特征向量,例如单位矩阵I只有一个特征值1,但是任意n维向量都是它的特征向量)

各个特征值对应的各自的特征向量组所构建的向量空间之间不重叠
证明:对于 A x 1 → = λ 1 x 1 → , A x 2 → = λ 2 x 2 → , λ 1 ! = λ 2 A \overrightarrow{x1} = \lambda1 \overrightarrow{x1} ,A \overrightarrow{x2} = \lambda2 \overrightarrow{x2},\lambda1 != \lambda2 Ax1 =λ1x1 Ax2 =λ2x2 λ1!=λ2
假设 x 1 = c x 2 x1 = cx2 x1=cx2
那么 A x 1 = λ 1 x 1 → Ax1 = \lambda1 \overrightarrow{x1} Ax1=λ1x1
又有 A x 1 = λ 2 x 1 → Ax1 = \lambda2 \overrightarrow{x1} Ax1=λ2x1
λ 1 x 1 = λ 2 x 2 → \lambda1 x1 = \lambda2 \overrightarrow{x2} λ1x1=λ2x2 x 1 → , x 2 → \overrightarrow{x1},\overrightarrow{x2} x1 x2 非0,矛盾!因此 x 1 ≠ c x 2 x1 \not= cx2 x1=cx2
类似地,可以推广至多一个特征值对应多个特征向量的情形。
于是,我们可以看出n个线性无关的特征向量的情形是:可以是n个特征值对应n个特征向量,也可以是少于n个特征值,其中存在一个特征值对应多个特征向量的情形,但是不同特征值对应的特征向量空间绝不可能重叠!

如果A能对角化,即有
A = P B P ′ , B = Λ = d i a g o n a l ( λ ) , P = [ x 1 , x 2 , . . . , x i , . . . , x n ] A = PBP', B= \Lambda = diagonal(\lambda),P=[ x1, x2, ..., xi, ..., xn] A=PBPB=Λ=diagonal(λ)P=[x1,x2,...,xi,...,xn]为特征列向量组成的的nxn矩阵,于是,利用相似矩阵的的观点:
如果有Ax,那么等价于PBP’x,P’将x映射到另一个向量空间(以P’的行向量为基底的空间),B是一个对角矩阵,那么也就是将映射之后的向量(坐标)伸缩特征值倍,最后P将之映射回原来的向量空间。
于是从总的过程来说,若A可以进行特征值分解,那么Ax意味着将x沿着A的各个特征向量方向伸缩特征值倍

附:对于非方阵A而言,如果需要对之做类似于特征值分解的信息提取,就需要用到奇异值分解(SVD)来解决问题,简而言之的做法就是分别对 A ′ A A'A AA A A ′ AA' AA做特征值分解,得到形如 A = U Σ V ′ A = U\Sigma V' A=UΣV的形式

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值