Vit-V-Net pytorch 代码理解与分析

本文介绍了ViT-V-Net,一种基于Vision Transformer的无监督三维医疗图像 registration 方法。论文详细阐述了Transformer Encoder、Multi-head Attention、Mlp模块以及卷积、下采样和解码组件。核心是将Transformer应用于医学图像的特征提取和配准任务,展示了Transformer在医疗影像处理中的潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文题目:ViT-V-Net: Vision Transformer for Unsupervised Volumetric Medical Image Registration

源码链接:https://github.com/junyuchen245/ViT-V-Net_for_3D_Image_Registration_Pytorch

图1 整体框架
图2 block
图4 代码调用关系

config.py:

配置初始的参数

import ml_collections

def get_3DReg_config():
    config = ml_collections.ConfigDict()
    config.patches = ml_collections.ConfigDict({'size': (8, 8, 8)})
    config.patches.grid = (8, 8, 8)
    config.hidden_size = 252
    config.transformer = ml_collections.ConfigDict()
    config.transformer.mlp_dim = 3072
    config.transformer.num_heads = 12
    config.transformer.num_layers = 12
    config.transformer.attention_dropout_rate = 0.0
    config.transformer.dropout_rate = 0.1
    config.patch_size = 8

    config.conv_first_channel = 512
    config.encoder_channels = (16, 32, 32)
    config.down_factor = 2
    config.down_num = 2
    config.decoder_channels = (96, 48, 32, 32, 16)
    config.skip_channels = (32, 32, 32, 32, 16)
    config.n_dims = 3
    config.n_skip = 5
    return config

models.py:

Multi-head attention

图3  Transformer Encoder

 Attention理论上是上图中的橙色部分

class Attention(nn.Module):
    def __init__(self, config, vis):
        super(Attention, self).__init__()
        self.vis = vis
        self.num_attention_heads = config.transformer["num_heads"]
        self.attention_head_size = int(config.hidden_size / self.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = Linear(config.hidden_size, self.all_head_size)
        self.key = Linear(config.hidden_size, self.all_head_size)
        self.value = Linear(config.hidden_size, self.all_head_size)

        self.out = Linear(config.hidden_size, config.hidden_size)
        self.attn_dropout = Dropout(config.transformer["attention_dropout_rate"])
        self.proj_dropout = Dropout(config.transformer["attention_dropout_rate"])

        self.softmax = Softmax(dim=-1)

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(self, hidden_states):
        mixed_query_layer = self.query(hidden_states)
        mixed_key_layer = self.key(hidden_states)
        mixed_value_layer = self.value(hidden_states)

        query_layer = self.transpose_for_scores(mixed_query_layer)
        key_layer = self.transpose_for_scores(mixed_key_layer)
        value_layer = self.transpose_for_scores
<think>好的,我现在需要处理用户关于Transformer架构和Vision TransformerViT)实现的问题。首先,我得回顾一下Transformer的基础知识,确保自己理解正确。Transformer最初是在2017年的论文《Attention Is All You Need》中提出的,主要用于自然语言处理任务。它的核心是自注意力机制,能够捕捉序列中的长距离依赖关系。 接下来是Vision Transformer,也就是ViT。用户可能想知道ViT是如何将Transformer应用到图像领域的,因为传统上CNN在图像处理中占主导地位。根据引用[3],ViT将图像分割成固定大小的补丁,然后线性投影这些补丁得到嵌入向量,作为Transformer的输入。这点很关键,因为传统的NLP Transformer处理的是序列数据,而图像是二维结构,所以ViT的处理方式需要调整。 我需要解释Transformer的基本组成部分:编码器和解码器结构,自注意力机制,多头注意力,前馈网络等。但ViT主要使用编码器部分,因为图像分类通常不需要生成序列,所以可能不需要解码器。这里可能需要引用论文中的结构描述,比如引用[3]提到的ViT架构普通Transformer相似,但处理的是图像补丁。 然后要讨论ViT的实现步骤,比如图像分块、线性投影、位置编码、Transformer编码器层、分类头等。用户可能对如何将图像转换为序列感兴趣,这里需要详细说明分块的过程,例如将HxWxC的图像分割成N个PxP的补丁,每个补丁展平后通过线性层映射到D维向量,再加上位置编码。这部分可以引用[3]中的内容,说明ViT如何处理二维输入。 另外,用户可能关心ViTCNN的结合,比如引用[2]提到的一些工作将卷积和Transformer结合,可能需要在相关问题中提到这些优化方法。同时,实现ViT代码示例需要符合Python和PyTorch的规范,确保正确性,比如使用nn.Module构建模型,分块处理,添加位置编码,使用TransformerEncoder层等。 还需要考虑ViT的优缺点,比如在数据量不足时性能可能不如CNN,但在大规模数据集上表现优异。可能引用[5]中的例子,说明零样本学习的挑战,但ViT在足够数据下表现良好。 最后,生成的相关问题要围绕用户可能感兴趣的后续内容,比如ViT的优化、CNN的比较、自注意力的可视化等,确保问题有引导性,帮助用户深入探索。 需要检查是否有遗漏的要点,比如位置编码的具体方式(ViT使用可学习的位置编码还是固定式),以及分类头的结构。此外,确保代码示例正确,特别是分块处理和Transformer层的配置是否正确,比如层数、头数等参数是否合理。同时,注意引用标记的正确使用,在解释分块和嵌入时引用[3],在结合卷积和Transformer时引用[2],以及在训练数据量影响时引用[5]。 总结来说,回答的结构应该先介绍Transformer架构,再过渡到ViT,详细说明其实现步骤,提供代码示例,讨论优缺点,最后生成相关问题。需要确保技术细节准确,引用正确,语言清晰,符合用户的中文需求。</think>### Transformer架构Vision Transformer (ViT) 实现详解 #### 1. Transformer核心架构 Transformer由编码器(Encoder)和解码器(Decoder)组成,核心为**自注意力机制**(Self-Attention): - **自注意力公式**: $$ \text{Attention}(Q,K,V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V $$ 其中$Q$(查询)、$K$(键)、$V$(值)通过输入向量线性变换得到,$d_k$为维度[^1]。 - **多头注意力**:将注意力并行拆分到多个子空间,增强模型捕捉不同特征的能力。 - **前馈网络(FFN)**:每个注意力层后接两层全连接网络,通常包含激活函数(如ReLU)。 #### 2. Vision Transformer (ViT) 实现步骤 ViT将图像视为序列输入Transformer,具体流程如下: ##### 2.1 图像分块嵌入(Image Patch Embedding) - **分块处理**:将输入图像($H \times W \times C$)划分为$N$个$P \times P$的补丁,每个补丁展平为$P^2 \times C$的向量。 $$ N = \frac{H \times W}{P^2} $$ - **线性投影**:通过可训练的线性层将补丁映射为$D$维嵌入向量,例如$P=16$时,投影维度为$768$(ViT-Base)[^3]。 - **位置编码**:添加可学习的位置嵌入(Position Embedding),保留空间信息。 ##### 2.2 Transformer编码器 ViT仅使用编码器堆叠(如ViT-Base含12层),每层包含: 1. **多头自注意力层**(Multi-Head Self-Attention) 2. **层归一化(LayerNorm)** 3. **前馈网络(FFN)** 4. **残差连接(Residual Connection)** ##### 2.3 分类头 提取首个位置(`[CLS]`标记)的输出向量,通过MLP完成分类。 #### 3. ViTPyTorch代码实现 ```python import torch import torch.nn as nn class ViT(nn.Module): def __init__(self, image_size=224, patch_size=16, in_channels=3, embed_dim=768, num_layers=12, num_heads=12, mlp_dim=3072, num_classes=1000): super().__init__() self.patch_size = patch_size self.num_patches = (image_size // patch_size) ** 2 # 分块投影位置编码 self.patch_embed = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=patch_size) self.pos_embed = nn.Parameter(torch.randn(1, self.num_patches + 1, embed_dim)) self.cls_token = nn.Parameter(torch.randn(1, 1, embed_dim)) # Transformer编码器 encoder_layer = nn.TransformerEncoderLayer( d_model=embed_dim, nhead=num_heads, dim_feedforward=mlp_dim, activation="gelu" ) self.transformer = nn.TransformerEncoder(encoder_layer, num_layers) # 分类头 self.mlp_head = nn.Sequential( nn.LayerNorm(embed_dim), nn.Linear(embed_dim, num_classes) ) def forward(self, x): B, C, H, W = x.shape x = self.patch_embed(x) # 分块投影 [B, embed_dim, h, w] x = x.flatten(2).transpose(1, 2) # [B, num_patches, embed_dim] # 添加[CLS]标记位置编码 cls_tokens = self.cls_token.expand(B, -1, -1) x = torch.cat([cls_tokens, x], dim=1) x += self.pos_embed # Transformer编码 x = self.transformer(x) # 分类输出 cls_output = x[:, 0] return self.mlp_head(cls_output) ``` #### 4. ViT的优缺点 | **优点** | **挑战** | |-----------------------------------|-----------------------------------| | 全局感受野捕捉长距离依赖 | 需要大量训练数据(如JFT-300M) | | 并行计算效率高于RNN | 小数据集上可能不如CNN(需结合数据增强) | | 可扩展性强(模型尺寸灵活调整) | 位置编码对图像旋转敏感 | #### 5. ViT的优化方向 - **混合架构**:结合CNN局部特征提取(如ResNet底层 + ViT高层)[^2] - **高效注意力**:使用稀疏注意力或窗口注意力(如Swin Transformer- **知识蒸馏**:用CNN教师模型指导ViT训练
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值