💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
💥1 概述
模拟退火改进多目标粒子群算法在分布式电源选址和定容中的应用是指利用模拟退火算法对多目标粒子群算法进行改进,以解决分布式电源选址和定容问题。在分布式电源选址和定容问题中,需要同时考虑多个目标,如最小化成本、最大化能源利用率等,因此需要使用多目标优化算法来求解。
模拟退火算法是一种全局优化算法,通过模拟金属退火的过程来搜索全局最优解。多目标粒子群算法是一种基于群体智能的优化算法,通过模拟鸟群的行为来搜索最优解。将模拟退火算法与多目标粒子群算法相结合,可以充分利用它们各自的优势,提高算法的搜索能力和收敛速度。
在分布式电源选址和定容问题中,利用模拟退火改进多目标粒子群算法可以更好地平衡多个目标之间的关系,提高算法的搜索效率和求解质量。通过对算法进行改进,可以使其更好地适应分布式电源选址和定容问题的特点,提高算法的收敛速度和稳定性,从而更好地应用于实际工程中。
该模型考虑了投资成本、网损和电压稳定性这三个关键因素,建立了一个复杂的三目标数学模型。为了解决这一复杂的多目标优化问题,研究人员采用了混合模拟退火改进多目标粒子群算法进行求解计算。通过在IEEE69节点系统上进行验证,他们证实了所提出的算法在分布式电源选址和定容方面的有效性。模型中的约束条件通过罚函数的形式得以实现,这进一步增强了模型的实用性和适用性。最令人印象深刻的是,该程序不仅能够获得多目标帕累托解集,还能通过权值多目标方式得到最佳优化结果,为工程和决策提供了强大的支持和指导。这一研究成果为电力系统规划和运营决策提供了重要的理论和方法支持,有望在实际应用中产生深远的影响。
1. 模拟退火改进多目标粒子群算法的基本原理
该算法融合了粒子群优化(PSO)的快速搜索能力和模拟退火(SA)的全局收敛性,通过分阶段策略平衡探索与开发:
- 前期阶段:采用标准PSO更新粒子速度和位置(式(2)-(3)),利用群体协作快速覆盖解空间,提升搜索效率。
- 后期阶段:引入模拟退火操作,以概率接受劣质解(Metropolis准则),避免陷入局部最优,增强种群多样性。
- 改进效果:
- 解决PSO的早熟收敛问题,提高全局搜索能力;
- 通过自适应权重(如动态学习因子)加速收敛,减少振荡现象。
算法流程:
- 初始化粒子位置和速度;
- 计算适应度值(目标函数);
- 更新个体/全局最优解;
- 执行PSO速度位置更新;
- 执行退火操作(概率接受劣解);
- 重复至满足终止条件。
2. 分布式电源选址定容的关键约束条件
在IEEE 69节点系统中,需满足以下约束(多目标优化模型的核心):
2.1 分布式电源(DG)约束
2.2 配电网安全约束
-
电压约束:

-
线路热稳定约束:

防止线路过载熔毁。 -
潮流方程约束:
采用DistFlow模型(二阶锥松弛),满足节点功率平衡:
确保系统潮流可行。
3. IEEE 69节点系统的拓扑特性与优化挑战
3.1 拓扑结构特征
- 节点布局:69个节点(编号0–69),含关键标记节点(如56、57可能为新能源接入点)。

- 区域划分:虚线框标示子区域,便于分区优化;含PV(光伏)、WE(风电)节点,需针对性配置DG。

- 连接复杂性:辐射状与网状结构并存,支路编号(如36、38)反映多层级连接关系。

3.2 特殊挑战
- 高维解空间:69节点组合爆炸,选址(Ck69Ck69)与定容(连续变量)的协同优化维度极高。
- 多目标冲突:
- 经济性(投资成本)vs. 技术性(网损、电压稳定性);
- 例:DG数量从3增至4时,网损降低50%(4.3 kW→2.0 kW),但投资成本剧增。
- 时序波动影响:负荷与新能源出力的时变性要求多场景优化(如风电/光伏出力曲线)。
- 故障率敏感性:组件故障率与维护时间影响DG/EV充电站(EVCS)的可靠性配置。
4. 算法在IEEE 69节点系统的应用案例
4.1 模型构建
- 目标函数:
- 约束处理:罚函数法将约束转化为目标项,确保解可行性。
4.2 算法改进策略
- 动态学习因子:
c=cmax−(cmax−cmin)×k/K
随迭代次数自适应调整,平衡全局/局部搜索。 - 小生境技术:维护多个帕累托解集,增强多样性。
4.3 验证结果
- 收敛性:SA-MOPSO比标准MOPSO收敛速度提升30%,避免早熟收敛。
- 经济性权衡:
- 最优DG数量为4(渗透率ψ=25%),此时网损(2.0 kW)与电压稳定性(VSI=0.997)达到最佳平衡。
- 鲁棒性:在含EV充电站的场景下,算法协调DG与EVCS位置(αi,DG+∑αi,j,EV>1),提升消纳能力。
5. 对比其他算法与未来方向
5.1 算法优势
| 算法 | SA-MOPSO | 标准PSO | 遗传算法 |
|---|---|---|---|
| 全局收敛性 | 强(退火机制跳出局部最优) | 弱 | 中等 |
| 收敛速度 | 快(动态学习因子) | 快但易振荡 | 慢 |
| 多目标处理 | 帕累托前沿均匀分布 | 需加权转化为单目标 | 需共享函数 |
| 适用性 | 高维、非线性约束(如IEEE 69) | 低维问题 | 中等复杂度问题 |
5.2 未来研究方向
- 不确定性建模:考虑风光出力/负荷的随机性,引入随机规划或鲁棒优化。
- 多能互补:结合电-氢-热储能(SAPSO算法优化容量),提升系统灵活性。
- 弹性提升:极端天气下线路脆弱性分析,优化DG/储能配置以增强抗灾能力。
结论
模拟退火改进多目标粒子群算法通过分阶段搜索策略(PSO快速初筛 + SA全局优化),有效解决了IEEE 69节点系统的高维、多约束、多目标优化难题。其在降低网损(≤2.0 kW)、提升电压稳定性(VSI≥0.997)的同时,兼顾经济性(最优DG数量为4),为分布式电源规划提供了兼具效率与精度的解决方案。未来需进一步融合时序特性与不确定性分析,以适应高比例新能源电网的发展需求。
📚2 运行结果


🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]刘波,张焰,杨娜.改进的粒子群优化算法在分布式电源选址和定容中的应用[J].电工技术学报,2008,(02):103-108.DOI:10.19595/j.cnki.1000-6753.tces.2008.02.017


411

被折叠的 条评论
为什么被折叠?



