Googlenet的延伸,通过对Inception module进行卷积分解展开网络,在ILSVRC 2012上,4个模型集成及多次裁切,top-1位为17.3%,top-5为3.5%。
GoogleNet的优势:从参数数量来看,GoogleNet参数为500万个,AlexNet参数个数为GoogleNet的12倍,VGGNet参数又是AlexNet的3倍。因此在内存或计算资源受限时,GoogleNet是比较好的选择。
Inception结构的更改:简单的放大结构,会导致计算增益消失。例如直接double滤波器组的数目会导致计算和参数4倍的增加。因此,作者给出了几个放大网络需要遵守的准则。
网络设计准则
1.避免表示瓶颈,即特征图大小应缓慢下降;
2.高维表示可以用网络代替;
3.可以在低维空间集成空间关系;
4.平衡网络的宽度和深度。
大尺寸滤波器卷积分解
GoogleNet的精度增益主要来自维度降低,这可以认为是卷积分解的特例。考虑到网络临近的激活高度相关,因此集成之前可以降维。Inception模块是全卷积的,每个权值对应一个乘法运算,进行卷积分解后可以减少参数数目进行快速训练,这样就可以增加滤波器组的大小提升精度。
1.大卷积分解为小卷积
5×5 的卷积可以使用两层 3×3 卷积代替,如图4为原始Inception模块,图5为替换后的模块,节约的计算时间可以用来增加滤波器数目。
2.分解为非对称卷积
3×3 的卷积使用 3×1 卷积和 1×3 卷积代替,如下图所示,这种结构在前几层效果不太好,但对