协方差矩阵和散布矩阵(散度矩阵)的意义

协方差矩阵和散布矩阵(散度矩阵)的意义


    【尊重 原创,转载请注明出处 】http://blog.csdn.net/guyuealian/article/details/69113407

      机器学习模式识别相关算法中,经常需要求样本的协方差矩阵C和散布矩阵S。如在PCA主成分分析中,就需要计算样本的散度矩阵,而有的教材资料是计算协方差矩阵实质上协方差矩阵和散度矩阵的意义就是一样的,散布矩阵(散度矩阵)前乘以系数1/(n-1)就可以得到协方差矩阵了。

   在模式识别的教程中,散布矩阵也称为散度矩阵,有的也称为类内离散度矩阵或者类内离差阵,用一个等式关系可表示为:

  关系:散度矩阵=类内离散度矩阵=类内离差阵=协方差矩阵×n-1

     样本的协方差矩阵乘以n-1倍即为散布矩阵,n表示样本的个数,散布矩阵的大小由特征维数d决定,是一个为d×的半正定矩阵。

一、协方差矩阵的基础

   对于二维随机变量(X,Y)之间的相互关系的数字特征,我们用协方差来描述,记为Cov(X,Y):


那么二维随机变量(X,Y)的协方差矩阵,为

对于三维随机变量X=X1, X2, X3的协方差矩阵可表示为:



        对于nX=X1, X2....X n协方差矩阵:


需要特别说明的是:

     (1)协方差矩阵是一个对称矩阵,且是半正定矩阵,主对角线是各个随机变量 的方差(各个维度上的方差)。

   (2)标准差和方差一般是用来描述一维数据的;对于多维情况,而协方差是用于描述任意两维数据之间的关系,一般用协方差矩阵来表示。因此协方差矩阵计算的是不同维度之间的协方差,而不是不同样本之间的

   (3)协方差计算过程可简述为:先求各个分量的均值E(Xi)E(Xj),然后每个分量减去各自的均值得到两条向量,在进行内积运算,然后求内积后的总和,最后把总和除以n-1

    例子:设有8个样本数据,每个样本有2个特征:(1,2);(3 3);(3 5);(5 4);(5 6);(6 5);(8 7);(9 8),那么可以看作二维的随机变量(X,Y),即

   X =[1 3 3 5 5 6 8 9]

   Y =[2 3 5 4 6 5 7 8]

     Matlab中可以使用cov(X, Y)函数计算样本的协方差矩阵,其中X,Y都是特征向量。当然若用表示样本的矩阵(X中每一行表示一个样本,每列是一个特征),那么可直接使用cov(X)计算了。

[plain]  view plain  copy
  在CODE上查看代码片 派生到我的代码片
  1. clear all  
  2. clc  
  3. X=[1,2;3 3;3 5;5 4;5 6;6 5;8 7;9 8]%样本矩阵:8个样本,每个样本2个特征  
  4. covX= cov(X)%使用cov函数求协方差矩阵  
运行结果为:

[plain]  view plain  copy
  在CODE上查看代码片 派生到我的代码片
  1. covX =  
  2.   
  3.     7.1429    4.8571  
  4.     4.8571    4.0000  
当然,可以按定义计算,Matlab代码如下:
clear all
clc
X=[1,2;3 3;3 5;5 4;5 6;6 5;8 7;9 8] %样本矩阵:8个样本,每个样本2个特征
covX= cov(X)                                %使用cov函数求协方差矩阵
%% (1)使用分量的方法,先求协方差c,再组合成协方差矩阵C
meanX=mean(X)        %样本均值
varX=var(X)               %样本方差
[Row Col]=size(X);
dimNum=Row;          %s样本个数size(X,1)=8
dim1=X(:,1);              %特征分量1
dim2=X(:,2);              %而在分量2
c11=sum( (dim1-mean(dim1)) .* (dim1-mean(dim1)) ) / ( dimNum-1 );
c21=sum( (dim2-mean(dim2)) .* (dim1-mean(dim1)) ) / ( dimNum-1 ); 
c12=sum( (dim1-mean(dim1)) .* (dim2-mean(dim2)) ) / ( dimNum-1 ); 
c22=sum( (dim2-mean(dim2)) .* (dim2-mean(dim2)) ) / ( dimNum-1 );
C22=[c11,c12;c21,c22]%协方差矩阵

%% 或者(2)直接求协方差矩阵C
tempX= repmat(meanX,Row,1);  
C22=(X-tempX)'*(X-tempX)/(dimNum-1)
运行结果:
covX =
    7.1429    4.8571
    4.8571    4.0000

meanX =
     5     5
varX =
    7.1429    4.0000
C22 =
    7.1429    4.8571
    4.8571    4.0000
C22 =
    7.1429    4.8571
    4.8571    4.0000
说明: 从中可以发现,样本的协方差矩阵的对角线即为样本的方差。


二、协方差矩阵的几何意义

   为了更好理解协方差矩阵的几何意义,下面以二维正态分布图为例(假设样本服从二维正态分布):


[plain]  view plain  copy
  在CODE上查看代码片 派生到我的代码片
  1. clear all;clc  
  2. mu=[0,0];         % 均值向量  
  3. C=[5 0;0 1]       %样本的协方差矩阵  
  4. [V,D] =eigs(C)    %求协方差矩阵的特征值D和特征向量V  
  5.  %% 绘制二维正态分布图  
  6. [X,Y]=meshgrid(-10:0.3:10,-10:0.3:10);%在XOY面上,产生网格数据  
  7. p=mvnpdf([X(:) Y(:)],mu,C);%求取联合概率密度,相当于Z轴  
  8. p=reshape(p,size(X));%将Z值对应到相应的坐标上  
  9. figure  
  10. set(gcf,'Position',get(gcf,'Position').*[1 1 1.3 1])  
  11. subplot(2,3,[1 2 4 5])  
  12. surf(X,Y,p),axis tight,title('二维正态分布图')  
  13. subplot(2,3,3)  
  14. surf(X,Y,p),view(2),axis tight,title('在XOY面上的投影')  
  15. subplot(2,3,6)  
  16. surf(X,Y,p),view([0 0]),axis tight,title('在XOZ面上的投影');  
协方差矩阵C的特征值D和特征向量V分别为:

[plain]  view plain  copy
  在CODE上查看代码片 派生到我的代码片
  1. V =  
  2.      1     0  
  3.      0     1  
  4.   
  5. D =  
  6.      5     0  
  7.      0     1  

说明:

   1)均值[0,0]代表正态分布的中心点,方差代表其分布的形状。

   2)协方差矩阵C的最大特征值D对应的特征向量V指向样本分布的主轴方向。例如,最大特征值D1=5对应的特征向量V1=[1 0]T即为样本分布的主轴方向(一般认为是数据的传播方向)。次大特征值D2=1对应的特征向量V2=[0 1]T,即为样本分布的短轴方向。



  

协方差矩阵C的特征值D和特征向量V分别为:

[plain]  view plain  copy
  在CODE上查看代码片 派生到我的代码片
  1. V =  
  2.      0     1  
  3.      1     0  
  4.   
  5. D =  
  6.   
  7.      5     0  
  8.      0     5  

 说明:

   1)由于协方差矩阵C具有两个相同的特征值D1=D2=5,因此样本在V1V2特征向量方向的分布是等程度的,故样本分布是一样圆形。

   2)特征值D1和D2的比值越大,数据分布形状就越扁;当比值等于1时,此时样本数据分布为圆形。



协方差矩阵C的特征值D和特征向量V分别为:

[plain]  view plain  copy
  在CODE上查看代码片 派生到我的代码片
  1. V =  
  2.     0.7071   -0.7071  
  3.     0.7071    0.7071  
  4.   
  5. D =  
  6.      6     0  
  7.      0     4  

 说明:

   1)特征值的比值D1/D2=6/4=1.5>1,因此样本数据分布形状是扁形,数据传播方向(样本的主轴方向)为V1=[0.7071 0.7071]T


综合上述,可知: 

(1)样本均值决定样本分布中心点的位置。

(2)协方差矩阵决定样本分布的扁圆程度。

   是扁还是圆,由协方差矩阵的特征值决定:当特征值D1和D2的比值为1时(D1/D2=1),则样本分布形状为圆形。当特征值的比值不为1时,样本分布为扁形;

   偏向方向(数据传播方向)由特征向量决定。最大特征值对应的特征向量,总是指向数据最大方差的方向(椭圆形的主轴方向)。次大特征向量总是正交于最大特征向量(椭圆形的短轴方向)。

三、协方差矩阵的应用

    协方差矩阵(散布矩阵)在模式识别中应用广泛,最典型的应用是PCA主成分分析了,PCA主要用于降维,其意义就是将样本数据从高维空间投影到低维空间中,并尽可能的在低维空间中表示原始数据。这就需要找到一组最合适的投影方向,使得样本数据往低维投影后,能尽可能表征原始的数据。此时就需要样本的协方差矩阵。PCA算法就是求出这堆样本数据的协方差矩阵的特征值和特征向量,而协方差矩阵的特征向量的方向就是PCA需要投影的方向。

    关于PCA的原理和分析,请见鄙人的博客:

    《PCA主成分分析原理分析和Matlab实现方法》:http://blog.csdn.NET/guyuealian/article/details/68487833

如果你觉得该帖子帮到你,还望贵人多多支持,鄙人会再接再厉,继续努力的~

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI吃大瓜

尊重原创,感谢支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值