阅读小结:Stacked Hourglass Networks for Human Pose Estimation

原创 2016年09月07日 14:34:53

arXiv: https://arxiv.org/pdf/1603.06937v2.pdf

github: https://github.com/anewell/pose-hg-train



What:

人体关键点预测,输入人体图像输出几个关键点。

使用了反复迭代bottom down/  top down 这个策略在人脸landmark 甚至更早像ASM就有,反复迭代来更精确。

但在CNN上具体是怎么操作的呢?(文题中的hourglass沙漏就是指结构像沙漏一样吧)


How:

1. 基本块

他们使用residual 作为基本网络结构


1*1 的卷积降维256->128 ,3*3 的卷积,1*1的卷积升维128->256


2. 单个沙漏网络的拓扑结构是对称的,结构类似fully convolutional network for semantic segmentation,(语义分割的那篇CVPR paper)

最终一共使用了8个沙漏网络。每个沙漏网络的输入都为 64*64.  (输入图片大小为256*256,一开始经过一次7*7 stride2 的conv 和一次 maxpooling  变成64)



3.如上图,在每次pooling之后都会有1个basic building block 加到之后 upsampling中相同大小的map中。

(这里可以看出每个pooling前的feature map都是256 channel的,up sampling的时候也是256 channel的)


4. 使用了中层监督,对前几个沙漏网络也有loss,这和训练深层res net/inception net一样。而loss的方法如下图


蓝色是prediction(这里有map的 regression Loss),有一路直传,一路从上一个沙漏网络来,三路加到一起传到下一个沙漏



版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

【人体姿态】Stacked Hourglass算法详解

本文使用全卷积网络解决人体姿态分析问题,截至2016年8月,在MPII姿态分析竞赛中暂列榜首。...

Stacked Hourglass Networks for human pose estimation

摘要 这篇文章提出了一个新颖的ConvNet架构,应用于人体姿态估计。作者认为重复使用 bottom-up,top-down能够提升网络性能。作者将这个网络命名为“stacked hourglass...

论文阅读理解 - Stacked Hourglass Networks for Human Pose Estimation

Stacked Hourglass Networks for Human Pose Estimationkeywords 人体姿态估计 Human Pose Estimation 给定单张RGB图像,...

论文实践学习 - Stacked Hourglass Networks for Human Pose Estimation

Stacked Hourglass Networks for Human Pose Estimation - Demo CodeStacked Hourglass Networks for Human...

深度学习在CV领域的进展以及一些由深度学习演变的新技术

CV领域 1.进展:如上图所述,当前CV领域主要包括两个大的方向,”低层次的感知” 和 “高层次的认知”。 2.主要的应用领域:视频监控、人脸识别、医学图像分析、自动驾驶、 机器人、AR、...

论文阅读理解 - Multi-Context Attention for Human Pose Estimation

Multi-Context Attention for Human Pose Estimation[Paper][Torch-Code][valse2017/ppt] 整合多内容信息注意力机制(mul...

17年 | 重开blog | 关于对称网络的的一点想(kun)法(huo)

距离上篇blog已经一年又近半载了。这之间,遇见科研,遇见跑步,遇见她,遇见别样的自己。重开blog,重拾初心,一切都是刚刚好,重头再来也没什么不可以。...
  • dp_BUPT
  • dp_BUPT
  • 2017年08月03日 13:06
  • 288

身体姿势估计 - Human Pose Estimation

1. 简介    人体姿势估计主要采用:数据驱动、从下到上的方法;在此方法中,像素被独立地标记为身体的某一部分,或投票决定关节的位置。...
  • MyArrow
  • MyArrow
  • 2016年07月19日 11:30
  • 4444

【人体姿态】Convolutional Pose Machines

2016年CVPR深度学习估计人体姿态的Convolutional Pose Machines算法

Stacked Hourglass Networks for human pose estimation

摘要 这篇文章提出了一个新颖的ConvNet架构,应用于人体姿态估计。作者认为重复使用 bottom-up,top-down能够提升网络性能。作者将这个网络命名为“stacked hourglass...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:阅读小结:Stacked Hourglass Networks for Human Pose Estimation
举报原因:
原因补充:

(最多只允许输入30个字)