阅读小结:Stacked Hourglass Networks for Human Pose Estimation

原创 2016年09月07日 14:34:53

arXiv: https://arxiv.org/pdf/1603.06937v2.pdf

github: https://github.com/anewell/pose-hg-train



What:

人体关键点预测,输入人体图像输出几个关键点。

使用了反复迭代bottom down/  top down 这个策略在人脸landmark 甚至更早像ASM就有,反复迭代来更精确。

但在CNN上具体是怎么操作的呢?(文题中的hourglass沙漏就是指结构像沙漏一样吧)


How:

1. 基本块

他们使用residual 作为基本网络结构


1*1 的卷积降维256->128 ,3*3 的卷积,1*1的卷积升维128->256


2. 单个沙漏网络的拓扑结构是对称的,结构类似fully convolutional network for semantic segmentation,(语义分割的那篇CVPR paper)

最终一共使用了8个沙漏网络。每个沙漏网络的输入都为 64*64.  (输入图片大小为256*256,一开始经过一次7*7 stride2 的conv 和一次 maxpooling  变成64)



3.如上图,在每次pooling之后都会有1个basic building block 加到之后 upsampling中相同大小的map中。

(这里可以看出每个pooling前的feature map都是256 channel的,up sampling的时候也是256 channel的)


4. 使用了中层监督,对前几个沙漏网络也有loss,这和训练深层res net/inception net一样。而loss的方法如下图


蓝色是prediction(这里有map的 regression Loss),有一路直传,一路从上一个沙漏网络来,三路加到一起传到下一个沙漏



版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

【人体姿态】Stacked Hourglass算法详解

本文使用全卷积网络解决人体姿态分析问题,截至2016年8月,在MPII姿态分析竞赛中暂列榜首。

Stacked Hourglass Networks for human pose estimation

摘要 这篇文章提出了一个新颖的ConvNet架构,应用于人体姿态估计。作者认为重复使用 bottom-up,top-down能够提升网络性能。作者将这个网络命名为“stacked hourglass...

我是如何成为一名python大咖的?

人生苦短,都说必须python,那么我分享下我是如何从小白成为Python资深开发者的吧。2014年我大学刚毕业..

【人体姿态】Convolutional Pose Machines

2016年CVPR深度学习估计人体姿态的Convolutional Pose Machines算法

论文阅读理解 - Stacked Hourglass Networks for Human Pose Estimation

Stacked Hourglass Networks for Human Pose Estimationkeywords 人体姿态估计 Human Pose Estimation 给定单张RGB图像,...

论文实践学习 - Stacked Hourglass Networks for Human Pose Estimation

Stacked Hourglass Networks for Human Pose Estimation - Demo CodeStacked Hourglass Networks for Human...

TensorFlow中cnn-cifar10样例代码详解

TensorFlow是一个支持分布式的深度学习框架,在Google的推动下,它正在变得越来越普及。我最近学了TensorFlow教程上的一个例子,即采用CNN对cifar10数据集进行分类。在看源代码...

【行人识别】Deep Transfer Learning for Person Re-identification

解决行人识别中的Re-Identification问题:判断两次出现的人是否是同一个人。在Market 1501竞赛中名列榜首。

【深度学习】聚焦机制DRAM(Deep Recurrent Attention Model)算法详解

Visual Attention基础,Multiple object recognition with visual attention算法解读。
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)