VR渲染的一些优化

本文介绍了Valve公司在VR渲染中采用的几种优化技巧,包括通过预测渲染来减少延迟、利用stencil mask减少不必要的边缘像素渲染、确认MSAA在VR中的必要性及部分法线贴图的有效性。

今天读了Alex Vlachos 先后在15和16年GDC写的一些关于在valve上做的vr 渲染的一些优化技巧,虽然很多东西没有能吸收,把理解的总结一下:

1. 预测渲染:因为vr对渲染的延迟特别敏感,vr设备可能每时每刻都在动,而正常来说gpu上渲染出来的结果一定都会比cpu计算提交的时候玩,看到的总是和当前所处位置不一致的图像,延迟越大就越会头晕,valve解决的思路是大量应用了预测,等于在在T0时刻就预测T1时刻应该所处的位置,计算T1的渲染结果,这样提交后,GPU在T1时刻渲染出来恰好敢上正处于T1的位置,因为这种T0到T1的提前量都是在几十ms的范围内,所以预测的误差不会很大,可以说为了减少延迟一定要“”预测“”,而具体这个提前量是多少,其实文章也是用nvsight或者gpuview这种大量的progile得到的经验值,这种预测渲染的CPU和GPU工作的流程是这样的,等于在GPU渲染本帧的时候,CPU已经在同时计算和提交“”预测的“”下一帧


2.因为vr渲染的图像是要wrapped,所以一些边缘的像素是不用渲染的,可以提前做个stencil mask,可以减少17%渲染量。

3.MSAA在vr渲染是可用的且是必要的

4.大部分法线贴图是可用的,但是有一些是不行的:特征细节过大的,似乎那些特征尺寸比较小的看上去表现的更好

内容概要:本文详细介绍了一个基于秃鹰搜索算法(BES)优化最小二乘支持向量机(LSSVM)的多特征分类预测项目,涵盖从理论原理、模型架构、代码实现到GUI界面设计的完整流程。项目通过BES算法自动优化LSSVM的关键参数(如正则化参数C和核函数参数gamma),提升模型在高维、多特征数据下的分类精度与泛化能力。结合特征工程、交叉验证、数据增强等技术,有效应对过拟合与参数调优难题,并通过混淆矩阵、ROC曲线、t-SNE可视化等多种方式实现结果解释与模型评估。项目还提供了完整的目录结构、模块化代码封装、并行计算支持及可扩展的部署架构,适用于金融风控、医疗诊断、工业故障检测等多个领域。; 适合人群:具备一定Python编程基础和机器学习知识的研发人员、数据科学家及工程技术人员,尤其适合从事智能算法开发、模型优化与实际工程落地的相关从业者;工作年限建议在1-5年之间。; 使用场景及目标:①在高维多特征数据场景中实现高精度分类预测;②解决传统LSSVM人工调参困难的问题,实现参数自动寻优;③构建可解释、可可视化、可部署的智能分类系统,支持金融、医疗、工业等领域的智能决策应用;④学习如何将智能优化算法(如BES)与经典机器学习模型(如LSSVM)融合并实现端到端项目开发。; 阅读建议:建议读者结合文中提供的完整代码进行实践操作,重点关注BES优化算法的实现逻辑、LSSVM的训练流程以及GUI界面的集成方式。在学习过程中,可尝试更换数据集、调整参数范围或引入其他优化算法进行对比实验,以深入理解模型性能变化机制。同时,建议关注项目部署与可扩展性设计,为后续工程化应用打下基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值